Low night temperatures inhibit galactinol synthase gene expression and phloem loading in melon leaves during fruit development

Low night temperatures inhibit galactinol synthase gene expression and phloem loading in melon... Low night temperatures seriously affect plant growth and fruit quality. To investigate the effect of low night temperatures on the expression of galactinol synthase genes (GOLS) and phloem loading of raffinose family oligosaccharides, particular stachyose and raffinose (RFO represents stachyose and raffinose in this paper) and to gain a better understanding of the relationship between the phloem loading of RFO and fruit development, melon (Cucumis melo L.) plants at the fruit development stage were treated with temperatures of 28/12°C or 28/9°C (day/night) with 28/15°C as the control. Both the CmGOLS1 and CmGOLS2 gene expression and the activity of galactinol synthase were clearly repressed after treatments with 9 and 12°C at night, and the effect of 9°C was more obvious. Furthermore, low night temperatures inhibited photosynthesis and caused the lower amounts of sucrose to supply the RFO synthesis. However, the total soluble sugar, RFO, and sucrose contents were increased in leaves subjected to low night temperatures. It is supposed that low night temperature blocked symplastic phloem loading, which led to the accumulation of RFO in the leaf cells. With increasing content of RFO in the leaves, the expression of GOLS genes was inhibited according to the principle of feedback, and therefore the decreased expression of GOLS limited RFO synthesis and was indirectly harmful to phloem loading, thereby affecting fruit development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Low night temperatures inhibit galactinol synthase gene expression and phloem loading in melon leaves during fruit development

Loading next page...
 
/lp/springer_journal/low-night-temperatures-inhibit-galactinol-synthase-gene-expression-and-0SfnfaMTJO
Publisher
Springer US
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714020058
Publisher site
See Article on Publisher Site

Abstract

Low night temperatures seriously affect plant growth and fruit quality. To investigate the effect of low night temperatures on the expression of galactinol synthase genes (GOLS) and phloem loading of raffinose family oligosaccharides, particular stachyose and raffinose (RFO represents stachyose and raffinose in this paper) and to gain a better understanding of the relationship between the phloem loading of RFO and fruit development, melon (Cucumis melo L.) plants at the fruit development stage were treated with temperatures of 28/12°C or 28/9°C (day/night) with 28/15°C as the control. Both the CmGOLS1 and CmGOLS2 gene expression and the activity of galactinol synthase were clearly repressed after treatments with 9 and 12°C at night, and the effect of 9°C was more obvious. Furthermore, low night temperatures inhibited photosynthesis and caused the lower amounts of sucrose to supply the RFO synthesis. However, the total soluble sugar, RFO, and sucrose contents were increased in leaves subjected to low night temperatures. It is supposed that low night temperature blocked symplastic phloem loading, which led to the accumulation of RFO in the leaf cells. With increasing content of RFO in the leaves, the expression of GOLS genes was inhibited according to the principle of feedback, and therefore the decreased expression of GOLS limited RFO synthesis and was indirectly harmful to phloem loading, thereby affecting fruit development.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 7, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off