Low cost, high resolution DPIV for measurement of turbulent fluid flow

Low cost, high resolution DPIV for measurement of turbulent fluid flow  An optimized cross-correlation based Imaging Velocimetry system is described and its performance is evaluated in numerical and physical experiments. Given a discrete image array pair, the flow seeding and image processing parameters are optimized to maximize displacement accuracy, regardless of the computational cost; collectively these techniques are known as Correlation Imaging Velocimetry (CIV). Order of magnitude improvements over standard DPIV methods can readily be obtained, allowing high resolution measurements to be made with low cost standard resolution cameras. Fundamental limits on the measurable range of length, velocity and vorticity scales are identified, and related to those encountered in homogeneous, 3D turbulence. The current restrictions apply to all imaging velocimetry measurements; some paths for future research that are likely to be profitable are identified, together with some that are not. Extensive use of CIV in this and other laboratories has allowed direct verification of these optimization principals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Low cost, high resolution DPIV for measurement of turbulent fluid flow

Loading next page...
 
/lp/springer_journal/low-cost-high-resolution-dpiv-for-measurement-of-turbulent-fluid-flow-q89mpsE7Gm
Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050135
Publisher site
See Article on Publisher Site

Abstract

 An optimized cross-correlation based Imaging Velocimetry system is described and its performance is evaluated in numerical and physical experiments. Given a discrete image array pair, the flow seeding and image processing parameters are optimized to maximize displacement accuracy, regardless of the computational cost; collectively these techniques are known as Correlation Imaging Velocimetry (CIV). Order of magnitude improvements over standard DPIV methods can readily be obtained, allowing high resolution measurements to be made with low cost standard resolution cameras. Fundamental limits on the measurable range of length, velocity and vorticity scales are identified, and related to those encountered in homogeneous, 3D turbulence. The current restrictions apply to all imaging velocimetry measurements; some paths for future research that are likely to be profitable are identified, together with some that are not. Extensive use of CIV in this and other laboratories has allowed direct verification of these optimization principals.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 10, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off