Low Complexity Linear Channel Estimation for MIMO Communication Systems

Low Complexity Linear Channel Estimation for MIMO Communication Systems Channel estimation is employed to get the current knowledge of channel states for an optimum detection in fading environments. In this paper, a new recursive multiple input multiple output (MIMO) channel estimation is proposed which is based on the recursive least square solution. The proposed recursive algorithm utilizes short training sequence on one hand and requires low computational complexity on the other hand. The algorithm is evaluated on a MIMO communication system through simulations. It is realized that the proposed algorithm provides fast convergence as compared to recursive least square (RLS) and robust variable forgetting factor RLS (RVFF-RLS) adaptive algorithms while utilizing lesser computational cost and provides independency on forgetting factor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Low Complexity Linear Channel Estimation for MIMO Communication Systems

Loading next page...
 
/lp/springer_journal/low-complexity-linear-channel-estimation-for-mimo-communication-BKD7u2P3qS
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4763-5
Publisher site
See Article on Publisher Site

Abstract

Channel estimation is employed to get the current knowledge of channel states for an optimum detection in fading environments. In this paper, a new recursive multiple input multiple output (MIMO) channel estimation is proposed which is based on the recursive least square solution. The proposed recursive algorithm utilizes short training sequence on one hand and requires low computational complexity on the other hand. The algorithm is evaluated on a MIMO communication system through simulations. It is realized that the proposed algorithm provides fast convergence as compared to recursive least square (RLS) and robust variable forgetting factor RLS (RVFF-RLS) adaptive algorithms while utilizing lesser computational cost and provides independency on forgetting factor.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off