Low and high-level visual feature-based apple detection from multi-modal images

Low and high-level visual feature-based apple detection from multi-modal images Automated harvesting requires accurate detection and recognition of the fruit within a tree canopy in real-time in uncontrolled environments. However, occlusion, variable illumination, variable appearance and texture make this task a complex challenge. Our research discusses the development of a machine vision system, capable of recognizing occluded green apples within a tree canopy. This involves the detection of “green” apples within scenes of “green leaves”, shadow patterns, branches and other objects found in natural tree canopies. The system uses both thermal infra-red and color image modalities in order to achieve improved performance. Maximization of mutual information is used to find the optimal registration parameters between images from the two modalities. We use two approaches for apple detection based on low and high-level visual features. High-level features are global attributes captured by image processing operations, while low-level features are strong responses to primitive parts-based filters (such as Haar wavelets). These features are then applied separately to color and thermal infra-red images to detect apples from the background. These two approaches are compared and it is shown that the low-level feature-based approach is superior (74% recognition accuracy) over the high-level visual feature approach (53.16% recognition accuracy). Finally, a voting scheme is used to improve the detection results, which drops the false alarms with little effect on the recognition rate. The resulting classifiers acting independently can partially recognize the on-tree apples, however, when combined the recognition accuracy is increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Low and high-level visual feature-based apple detection from multi-modal images

Loading next page...
 
/lp/springer_journal/low-and-high-level-visual-feature-based-apple-detection-from-multi-IrdbsoQWIX
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-010-9198-x
Publisher site
See Article on Publisher Site

Abstract

Automated harvesting requires accurate detection and recognition of the fruit within a tree canopy in real-time in uncontrolled environments. However, occlusion, variable illumination, variable appearance and texture make this task a complex challenge. Our research discusses the development of a machine vision system, capable of recognizing occluded green apples within a tree canopy. This involves the detection of “green” apples within scenes of “green leaves”, shadow patterns, branches and other objects found in natural tree canopies. The system uses both thermal infra-red and color image modalities in order to achieve improved performance. Maximization of mutual information is used to find the optimal registration parameters between images from the two modalities. We use two approaches for apple detection based on low and high-level visual features. High-level features are global attributes captured by image processing operations, while low-level features are strong responses to primitive parts-based filters (such as Haar wavelets). These features are then applied separately to color and thermal infra-red images to detect apples from the background. These two approaches are compared and it is shown that the low-level feature-based approach is superior (74% recognition accuracy) over the high-level visual feature approach (53.16% recognition accuracy). Finally, a voting scheme is used to improve the detection results, which drops the false alarms with little effect on the recognition rate. The resulting classifiers acting independently can partially recognize the on-tree apples, however, when combined the recognition accuracy is increased.

Journal

Precision AgricultureSpringer Journals

Published: Oct 14, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off