Loss of ezrin expression reduced the susceptibility to the glomerular injury in mice

Loss of ezrin expression reduced the susceptibility to the glomerular injury in mice Ezrin is highly expressed in glomerular podocytes and is reported to form a multi-protein complex with scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF2) and podocalyxin, a major sialoprotein. Podocalyxin-knockout mice died within 24 h of birth with anuric renal failure, whereas NHERF2-knockout mice show no apparent changes in the glomerular functions. However, the physiological roles of ezrin in glomerular podocytes remain unclear. Here, we investigated the importance of ezrin in the regulation of glomerular podocyte function using ezrin-knockdown mice (Vil2 kd/kd ). The Vil2 kd/kd mice did not exhibit apparent glomerular dysfunction, morphological defects or abnormal localisation of podocalyxin and NHERF2 in podocytes. Thus, we investigated the influence of ezrin defects on Rho-GTPase activity, as ezrin interacts with the Rho-GTPase dissociation inhibitor (Rho-GDI), which plays a key role in the regulation of podocyte actin organisation. In Vil2 kd/kd glomeruli, Rac1 activity was significantly reduced compared to wildtype (WT) glomeruli at baseline. Furthermore, Vil2 kd/kd mice showed reduced susceptibility to glomerular injury. In WT glomeruli, Rac1 activity was enhanced in nephrotic conditions, but remained at baseline levels in Vil2 kd/kd glomeruli, suggesting that loss of ezrin protects podocytes from injury-induced morphological changes by suppressing Rac1 activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Loss of ezrin expression reduced the susceptibility to the glomerular injury in mice

Loading next page...
 
/lp/springer_journal/loss-of-ezrin-expression-reduced-the-susceptibility-to-the-glomerular-9fgJNc56dG
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22846-0
Publisher site
See Article on Publisher Site

Abstract

Ezrin is highly expressed in glomerular podocytes and is reported to form a multi-protein complex with scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF2) and podocalyxin, a major sialoprotein. Podocalyxin-knockout mice died within 24 h of birth with anuric renal failure, whereas NHERF2-knockout mice show no apparent changes in the glomerular functions. However, the physiological roles of ezrin in glomerular podocytes remain unclear. Here, we investigated the importance of ezrin in the regulation of glomerular podocyte function using ezrin-knockdown mice (Vil2 kd/kd ). The Vil2 kd/kd mice did not exhibit apparent glomerular dysfunction, morphological defects or abnormal localisation of podocalyxin and NHERF2 in podocytes. Thus, we investigated the influence of ezrin defects on Rho-GTPase activity, as ezrin interacts with the Rho-GTPase dissociation inhibitor (Rho-GDI), which plays a key role in the regulation of podocyte actin organisation. In Vil2 kd/kd glomeruli, Rac1 activity was significantly reduced compared to wildtype (WT) glomeruli at baseline. Furthermore, Vil2 kd/kd mice showed reduced susceptibility to glomerular injury. In WT glomeruli, Rac1 activity was enhanced in nephrotic conditions, but remained at baseline levels in Vil2 kd/kd glomeruli, suggesting that loss of ezrin protects podocytes from injury-induced morphological changes by suppressing Rac1 activation.

Journal

Scientific ReportsSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial