Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains

Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains Spectral domain optical coherence tomography (SD-OCT) has recently been established as a method for in vivo imaging of fundus and retina in the mouse. It enables more effective studies of retinal diseases including investigations of etiopathologic mechanisms. In order to learn more about longitudinal fundus development and to enable recognition of disease-associated irregularities, we performed confocal scanning laser ophthalmoscopy (cSLO) and SD-OCT measurements in the inbred strains C57BL/6J, C3HeB/FeJ, FVB/NCrl, BALB/cByJ, and 129S2/SvJ when they were between 2 and 6 months of age. In general, cSLO and SD-OCT data did not reveal sex-specific or unilateral differences. C3HeB/FeJ and FVB/NCrl mice showed diffuse choroidal dysplasia. Choroidal vein-like structures appeared as dark fundus stripes in C3HeB/FeJ. In FVB/NCrl, fundus fleck accumulation was found. In contrast, only minor time-dependent changes of fundus appearance were observed in C57BL/6J, BALB/cByJ, and 129S2/SvJ. This was also found for individual fundic main blood vessel patterns in all inbred strains. Vessel numbers varied between 6 and 13 in C57BL/6J. This was comparable in most cases. We further found that retinae were significantly thicker in C57BL/6J compared to the other strains. Total retinal thickness generally did not change between 2 and 6 months of age. As a conclusion, our results indicate lifelong pathologic processes in C3HeB/FeJ and FVB/NCrl that affect choroid and orbital tissues. Inbred strains with regular retinal development did not reveal major time-dependent variations of fundus appearance, blood vessel pattern, or retinal thickness. Consequently, progressive changes of these parameters are suitable indicators for pathologic outliers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains

Loading next page...
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Cell Biology; Anatomy; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial