Long-term agronomic practices alter the composition of asymbiotic diazotrophic bacterial community and their nitrogen fixation genes in an acidic red soil

Long-term agronomic practices alter the composition of asymbiotic diazotrophic bacterial... The asymbiotic diazotrophic bacteria are important for nitrogen (N) input to soil. Here, we investigated asymbiotic diazotrophic bacteria in an acidic red soil from functional, phylogenetic, and ecological perspectives. We firstly confirmed that phosphorus (P) availability determines the overall asymbiotic N fixation potential in the red soil. Then, we analyzed the soil bacterial community and N fixing (nifH) gene composition. Long-term different fertilizations significantly affected the composition of soil bacterial community. In addition, long-term organic cultivations increased most of the asymbiotic diazotrophic bacteria and the corresponding nifH gene abundances. Few asymbiotic diazotrophic bacteria, belonging to Chloroflexaceae, Methylocystaceae, Enterobacteriaceae, and Pseudomonadaceae, and their corresponding nifH genes were more abundant in N and P co-limited than in not co-limited soils, suggesting that some bacterial taxa from these families might be activated under nutrient limited conditions. Our findings provided new information for the distribution of asymbiotic diazotrophic bacteria in red soil and gave insights into the ecology of diazotrophic bacteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biology and Fertility of Soils Springer Journals

Long-term agronomic practices alter the composition of asymbiotic diazotrophic bacterial community and their nitrogen fixation genes in an acidic red soil

Loading next page...
 
/lp/springer_journal/long-term-agronomic-practices-alter-the-composition-of-asymbiotic-1UWKmwF0BR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Agriculture; Soil Science & Conservation
ISSN
0178-2762
eISSN
1432-0789
D.O.I.
10.1007/s00374-018-1264-y
Publisher site
See Article on Publisher Site

Abstract

The asymbiotic diazotrophic bacteria are important for nitrogen (N) input to soil. Here, we investigated asymbiotic diazotrophic bacteria in an acidic red soil from functional, phylogenetic, and ecological perspectives. We firstly confirmed that phosphorus (P) availability determines the overall asymbiotic N fixation potential in the red soil. Then, we analyzed the soil bacterial community and N fixing (nifH) gene composition. Long-term different fertilizations significantly affected the composition of soil bacterial community. In addition, long-term organic cultivations increased most of the asymbiotic diazotrophic bacteria and the corresponding nifH gene abundances. Few asymbiotic diazotrophic bacteria, belonging to Chloroflexaceae, Methylocystaceae, Enterobacteriaceae, and Pseudomonadaceae, and their corresponding nifH genes were more abundant in N and P co-limited than in not co-limited soils, suggesting that some bacterial taxa from these families might be activated under nutrient limited conditions. Our findings provided new information for the distribution of asymbiotic diazotrophic bacteria in red soil and gave insights into the ecology of diazotrophic bacteria.

Journal

Biology and Fertility of SoilsSpringer Journals

Published: Jan 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial