Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance

Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus... Vaccinia virus (VACV) has been associated with several bovine vaccinia outbreaks in Brazil, causing exanthematic lesions in dairy cattle and humans. The way that VACV circulates in the environment is unknown, as is the way that this virus is transferred from wildlife to farms. Rodents are hypothetical VACV reservoirs, and murine feces has been identified as a potential source of viral shedding and transmission. In this work, we analyzed the stability of VACV infectious particles and DNA in feces from intranasally infected mice, exposed to environmental temperature and humidity, by titration assays and PCR, respectively. The results showed that VACV infectious particles were still detected at 20 days post-environmental-exposure (d.p.e.), while viral DNA was detected until 60 d.p.e. A gradual decrease in fecal viral load could be detected in all analyzed VACV strains. This work indicates long-lasting stability of VACV in murine feces and reinforces the idea that fecal matter may represent a potential source of circulating virus among rodents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance

Loading next page...
 
/lp/springer_journal/long-lasting-stability-of-vaccinia-virus-strains-in-murine-feces-pOzfyWYhw0
Publisher
Springer Vienna
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0470-1
Publisher site
See Article on Publisher Site

Abstract

Vaccinia virus (VACV) has been associated with several bovine vaccinia outbreaks in Brazil, causing exanthematic lesions in dairy cattle and humans. The way that VACV circulates in the environment is unknown, as is the way that this virus is transferred from wildlife to farms. Rodents are hypothetical VACV reservoirs, and murine feces has been identified as a potential source of viral shedding and transmission. In this work, we analyzed the stability of VACV infectious particles and DNA in feces from intranasally infected mice, exposed to environmental temperature and humidity, by titration assays and PCR, respectively. The results showed that VACV infectious particles were still detected at 20 days post-environmental-exposure (d.p.e.), while viral DNA was detected until 60 d.p.e. A gradual decrease in fecal viral load could be detected in all analyzed VACV strains. This work indicates long-lasting stability of VACV in murine feces and reinforces the idea that fecal matter may represent a potential source of circulating virus among rodents.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off