Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies

Location of mouse and human genes corresponding to conserved canine olfactory receptor gene... Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved olfactory receptor genes, each representing separate, recently identified canine gene subfamilies. Three of the four canine genes detected related gene clusters in regions of mouse Chromosomes (Chrs) 2, 9, and 10, near previously mapped mouse olfactory genes, while one detected a formerly unidentified gene cluster located on mouse Chr 6. In addition, we have localized two human gene clusters with homology to the canine gene, CfOLF4, within the established physical map of Chr 19p. Combined with recently published studies, these data link the four conserved olfactory gene subfamilies to homologous regions of the human, dog, and mouse genomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies

Loading next page...
 
/lp/springer_journal/location-of-mouse-and-human-genes-corresponding-to-conserved-canine-3KBlJJT6g0
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900768
Publisher site
See Article on Publisher Site

Abstract

Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved olfactory receptor genes, each representing separate, recently identified canine gene subfamilies. Three of the four canine genes detected related gene clusters in regions of mouse Chromosomes (Chrs) 2, 9, and 10, near previously mapped mouse olfactory genes, while one detected a formerly unidentified gene cluster located on mouse Chr 6. In addition, we have localized two human gene clusters with homology to the canine gene, CfOLF4, within the established physical map of Chr 19p. Combined with recently published studies, these data link the four conserved olfactory gene subfamilies to homologous regions of the human, dog, and mouse genomes.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 27, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off