Locally-optimal multi-robot navigation under delaying disturbances using homotopy constraints

Locally-optimal multi-robot navigation under delaying disturbances using homotopy constraints We study the problem of reliable motion coordination strategies for teams of mobile robots when any of the robots can be temporarily stopped by an exogenous disturbance at any time. We assume that an arbitrary multi-robot planner initially provides coordinated trajectories computed without considering such disturbances. We are interested in designing a control strategy that handles delaying disturbance such that collisions and deadlocks are provably avoided, and the travel time is minimized. The problem is analyzed in a coordination space framework, in which each dimension represents the position of a single robot along its planned trajectory. We demonstrate that to avoid deadlocks, the trajectory of the system in the coordination space must be homotopic to the trajectory corresponding to the planned solution. We propose a controller that abides this homotopy constraint while minimizing the travel time. Besides being provably deadlock-free, our experiments show that travel time is significantly smaller with our method than than with a reactive method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Locally-optimal multi-robot navigation under delaying disturbances using homotopy constraints

Loading next page...
 
/lp/springer_journal/locally-optimal-multi-robot-navigation-under-delaying-disturbances-u2fMSgUytJ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9673-6
Publisher site
See Article on Publisher Site

Abstract

We study the problem of reliable motion coordination strategies for teams of mobile robots when any of the robots can be temporarily stopped by an exogenous disturbance at any time. We assume that an arbitrary multi-robot planner initially provides coordinated trajectories computed without considering such disturbances. We are interested in designing a control strategy that handles delaying disturbance such that collisions and deadlocks are provably avoided, and the travel time is minimized. The problem is analyzed in a coordination space framework, in which each dimension represents the position of a single robot along its planned trajectory. We demonstrate that to avoid deadlocks, the trajectory of the system in the coordination space must be homotopic to the trajectory corresponding to the planned solution. We propose a controller that abides this homotopy constraint while minimizing the travel time. Besides being provably deadlock-free, our experiments show that travel time is significantly smaller with our method than than with a reactive method.

Journal

Autonomous RobotsSpringer Journals

Published: Dec 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial