Localization and dynamic expression of a 27.8 kDa receptor protein for lymphocystis disease virus infection in sea bass (Lateolabrax japonicus) tissues

Localization and dynamic expression of a 27.8 kDa receptor protein for lymphocystis disease virus... Lymphocystis disease virus (LCDV) infects target cells by attaching to a 27.8 kDa receptor (27.8R) protein in flounder Paralichthys olivaceus, and anti-27.8R monoclonal antibodies (MAbs) have been developed. However, the 27.8R existence in tissues of sea bass (Lateolabrax japonicus) and its role in LCDV infection have remained unclear. In this study, the results of western blotting demonstrated that the same 27.8R was shared by flounder and sea bass. LCDV-free sea bass individuals were intramuscularly injected with LCDV, and viral copies were detected in tissues from 3 h post infection and showed a time-dependent increase during 9 days infection. Distribution and synthesis of 27.8R in sea bass tissues were investigated by using anti-27.8R MAbs as probes. It was found that 27.8R was distributed in all the tested tissues. The levels of 27.8R protein were highest in gill and skin, then a bit lowly in stomach, head kidney and heart, followed by spleen, intestine, blood cells, gonad and liver, and least in kidney and brain in healthy sea bass. Upon LCDV infection, 27.8R synthesis was up-regulated in each tissue, and higher in the tissues with higher LCDV copies. The 27.8R and LCDV were detected in some peripheral blood leukocytes but not in red blood cells. These results suggested that 27.8R was widely distributed in sea bass tissues, and it served as a receptor and correlated with tissue tropism of LCDV infection. Furthermore, leukocytes had the potential of being a LCDV carrier and were responsible for a systemic infection of LCDV in sea bass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ocean University of China Springer Journals

Localization and dynamic expression of a 27.8 kDa receptor protein for lymphocystis disease virus infection in sea bass (Lateolabrax japonicus) tissues

Loading next page...
 
/lp/springer_journal/localization-and-dynamic-expression-of-a-27-8-kda-receptor-protein-for-CBqsagXWJg
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Ocean University of China and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Oceanography; Meteorology
ISSN
1672-5182
eISSN
1993-5021
D.O.I.
10.1007/s11802-017-3280-1
Publisher site
See Article on Publisher Site

Abstract

Lymphocystis disease virus (LCDV) infects target cells by attaching to a 27.8 kDa receptor (27.8R) protein in flounder Paralichthys olivaceus, and anti-27.8R monoclonal antibodies (MAbs) have been developed. However, the 27.8R existence in tissues of sea bass (Lateolabrax japonicus) and its role in LCDV infection have remained unclear. In this study, the results of western blotting demonstrated that the same 27.8R was shared by flounder and sea bass. LCDV-free sea bass individuals were intramuscularly injected with LCDV, and viral copies were detected in tissues from 3 h post infection and showed a time-dependent increase during 9 days infection. Distribution and synthesis of 27.8R in sea bass tissues were investigated by using anti-27.8R MAbs as probes. It was found that 27.8R was distributed in all the tested tissues. The levels of 27.8R protein were highest in gill and skin, then a bit lowly in stomach, head kidney and heart, followed by spleen, intestine, blood cells, gonad and liver, and least in kidney and brain in healthy sea bass. Upon LCDV infection, 27.8R synthesis was up-regulated in each tissue, and higher in the tissues with higher LCDV copies. The 27.8R and LCDV were detected in some peripheral blood leukocytes but not in red blood cells. These results suggested that 27.8R was widely distributed in sea bass tissues, and it served as a receptor and correlated with tissue tropism of LCDV infection. Furthermore, leukocytes had the potential of being a LCDV carrier and were responsible for a systemic infection of LCDV in sea bass.

Journal

Journal of Ocean University of ChinaSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off