Local Centre of Mass Face for face recognition under varying illumination

Local Centre of Mass Face for face recognition under varying illumination In this work we propose a novel method to extract illumination insensitive features for face recognition called local centre of mass face (LCMF). In this LCMF approach the gradient angle between the centre of mass and centre pixel of a selected neighborhood is extracted. Theoretically it is shown that this feature is illumination invariant using the Illumination Reflectance Model (IRM) and is robust to different illumination variations. It is also shown that this method does not involve any explicit computation of Luminance (L) component and as centre of mass is an inherent feature of a mass distribution, its slope with the centre pixel of the neighborhood has local edge preserving capabilities. The angle of the slope obtained using Centre of Mass with the centre pixel of the neighborhood is used as a feature vector. This feature vector is directed from the darkest section of the neighborhood to the brightest section of the neighborhood as Centre of Mass is always positioned towards the brighter side of a mass distribution and hence encrypts the edge orientation. Using the L1 norm distance measure, these feature vectors are used to classify the images. The method does not involve any preprocessing and training of images. The proposed method has been successfully tested under different illumination variant databases like AR, CMU-PIE, and extended Yale B using standard protocols, and performance is compared with recently published methods in terms of rank-1 recognition accuracy. The method is also applied on Sketch-Photo pair database like CUHK. For unbiased or fair performance evaluation, the Sensitivity and Specificity are also being measured for the proposed method on all the databases. The proposed method gives better accuracy performance and outperforms other recent face recognition methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Local Centre of Mass Face for face recognition under varying illumination

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial