Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton

Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a ‘hot crust but cold mantle’ structure. At the eastern NCC, the crust and the mantle characterized by a ‘cold crust but hot mantle.’ The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas the eastern NCC was active with a hot lithosphere. The numerical results show that the MUT is the main driving force for the NCC destruction, whereas the complex interaction of surrounding plates lit a fuse for the lithospheric thinning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Earth Sciences Springer Journals

Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton

Loading next page...
 
/lp/springer_journal/lithospheric-thermal-evolution-and-dynamic-mechanism-of-destruction-of-UnhqHY9Ejw
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Geophysics/Geodesy; Sedimentology; Structural Geology; Mineral Resources; Geochemistry
ISSN
1437-3254
eISSN
1437-3262
D.O.I.
10.1007/s00531-017-1533-2
Publisher site
See Article on Publisher Site

Abstract

The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a ‘hot crust but cold mantle’ structure. At the eastern NCC, the crust and the mantle characterized by a ‘cold crust but hot mantle.’ The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas the eastern NCC was active with a hot lithosphere. The numerical results show that the MUT is the main driving force for the NCC destruction, whereas the complex interaction of surrounding plates lit a fuse for the lithospheric thinning.

Journal

International Journal of Earth SciencesSpringer Journals

Published: Sep 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off