Literature-Based Automated Reconstruction, Expansion, and Refinement of the TGF-β Superfamily Ligand-Receptor Network

Literature-Based Automated Reconstruction, Expansion, and Refinement of the TGF-β Superfamily... The TGF-β pathway transduces a variety of extracellular signals into intracellular responses that control multiple cellular processes, including cell growth, apoptosis, and differentiation. It encompasses 33 ligands that interact with 7 type II receptors and 5 type I receptors at the plasma membrane to potentially form 1,155 ligand-receptor complexes in mammalian cells. Retrieving the information of the complexes that are actually formed from reading the literature might be tedious and prone to missing links. Here, we have developed an automated literature-mining procedure to obtain the interactions of the TGF-β ligand-receptor network. By querying the Information Hyperlinked over Proteins (iHOP) online service and processing the results, we were able to find pairwise interactions between ligands and receptors that allowed us to build the network automatically from the literature. Comparison with available published review papers indicates that this method is able to automatically reconstruct and expand the TGF-β superfamily ligand-receptor network. Retrieving and parsing the full text of the manuscripts containing the interactions allowed us to refine the network interactions for specific cell lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Literature-Based Automated Reconstruction, Expansion, and Refinement of the TGF-β Superfamily Ligand-Receptor Network

Loading next page...
 
/lp/springer_journal/literature-based-automated-reconstruction-expansion-and-refinement-of-c7WrQ6AiDn
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9643-2
Publisher site
See Article on Publisher Site

Abstract

The TGF-β pathway transduces a variety of extracellular signals into intracellular responses that control multiple cellular processes, including cell growth, apoptosis, and differentiation. It encompasses 33 ligands that interact with 7 type II receptors and 5 type I receptors at the plasma membrane to potentially form 1,155 ligand-receptor complexes in mammalian cells. Retrieving the information of the complexes that are actually formed from reading the literature might be tedious and prone to missing links. Here, we have developed an automated literature-mining procedure to obtain the interactions of the TGF-β ligand-receptor network. By querying the Information Hyperlinked over Proteins (iHOP) online service and processing the results, we were able to find pairwise interactions between ligands and receptors that allowed us to build the network automatically from the literature. Comparison with available published review papers indicates that this method is able to automatically reconstruct and expand the TGF-β superfamily ligand-receptor network. Retrieving and parsing the full text of the manuscripts containing the interactions allowed us to refine the network interactions for specific cell lines.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 2, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off