Liquid–Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

Liquid–Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical... The liquid–solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid–solid interaction occur, including solid-state diffusion, uniform clad–core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad–core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallurgical and Materials Transactions A Springer Journals

Liquid–Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

Loading next page...
 
/lp/springer_journal/liquid-solid-interaction-in-al-si-al-mn-cu-mg-brazing-sheets-and-its-ki3fXBiqom
Publisher
Springer Journals
Copyright
Copyright © 2018 by Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
1073-5623
eISSN
1543-1940
D.O.I.
10.1007/s11661-018-4670-8
Publisher site
See Article on Publisher Site

Abstract

The liquid–solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid–solid interaction occur, including solid-state diffusion, uniform clad–core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad–core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

Journal

Metallurgical and Materials Transactions ASpringer Journals

Published: May 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off