Liquid-phase MnO2-modification of clinoptilolite

Liquid-phase MnO2-modification of clinoptilolite Formation mechanism of the MnO2 phase in the reaction of heterogeneous synthesis between Mn2+ and MnO 4 - ions on a solid aluminosilicate surface in aqueous solutions was studied. It was shown that, for lowsilica forms, the Mn2+ ion is oxidized by the MnO 4 - ion uniformly across the grain depth to give the MnO2 phase and manganese manganites. For high-silica materials, the MnO2 phase is formed on the outer surface of grains, with the decomposition of the MnO 4 - ion and formation of the MnO2 phase and molecular oxygen. It was found that, for the clinoptilolite rock used as a solid support, the yield of the MnO2 phase and its distribution over the particle volume depend on the penetration capacity of the MnO 4 - ion into the porous structure of this rock, determined by its composition. It is shown that the amount of the MnO2 phase grows with increasing concentration of the MnO 4 - ion and treatment duration, with the phase thickness being 15–20 and 350–1050 μm for, respectively, high- and low-silica samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Liquid-phase MnO2-modification of clinoptilolite

Loading next page...
 
/lp/springer_journal/liquid-phase-mno2-modification-of-clinoptilolite-40S3n8756p
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217010037
Publisher site
See Article on Publisher Site

Abstract

Formation mechanism of the MnO2 phase in the reaction of heterogeneous synthesis between Mn2+ and MnO 4 - ions on a solid aluminosilicate surface in aqueous solutions was studied. It was shown that, for lowsilica forms, the Mn2+ ion is oxidized by the MnO 4 - ion uniformly across the grain depth to give the MnO2 phase and manganese manganites. For high-silica materials, the MnO2 phase is formed on the outer surface of grains, with the decomposition of the MnO 4 - ion and formation of the MnO2 phase and molecular oxygen. It was found that, for the clinoptilolite rock used as a solid support, the yield of the MnO2 phase and its distribution over the particle volume depend on the penetration capacity of the MnO 4 - ion into the porous structure of this rock, determined by its composition. It is shown that the amount of the MnO2 phase grows with increasing concentration of the MnO 4 - ion and treatment duration, with the phase thickness being 15–20 and 350–1050 μm for, respectively, high- and low-silica samples.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off