Liquid film break-up in a model of a prefilming airblast nozzle

Liquid film break-up in a model of a prefilming airblast nozzle  The paper describes the atomisation process of a liquid in an axissymmetric shear layer formed through the interaction of turbulent coaxial jets (respectively, inner and outer jets), with and without swirl, in a model airblast prefilming atomiser. The atomisation process and spray quality was studied using different visualisation techniques, namely laser shadowgraphy and digital image acquisition. The experiments were conducted for different liquid flow rates, Reynolds numbers ranging from 6600 to 66000 and 27300 to 92900 for the inner and outer air flows, respectively, for different outer flow swirl levels, and two liquid film thicknesses −0.2 and 0.7 mm. All the tests were carried out at atmospheric pressure and using water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Liquid film break-up in a model of a prefilming airblast nozzle

Loading next page...
 
/lp/springer_journal/liquid-film-break-up-in-a-model-of-a-prefilming-airblast-nozzle-EVlsXC7x73
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050190
Publisher site
See Article on Publisher Site

Abstract

 The paper describes the atomisation process of a liquid in an axissymmetric shear layer formed through the interaction of turbulent coaxial jets (respectively, inner and outer jets), with and without swirl, in a model airblast prefilming atomiser. The atomisation process and spray quality was studied using different visualisation techniques, namely laser shadowgraphy and digital image acquisition. The experiments were conducted for different liquid flow rates, Reynolds numbers ranging from 6600 to 66000 and 27300 to 92900 for the inner and outer air flows, respectively, for different outer flow swirl levels, and two liquid film thicknesses −0.2 and 0.7 mm. All the tests were carried out at atmospheric pressure and using water.

Journal

Experiments in FluidsSpringer Journals

Published: May 11, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off