Lipid composition and content in the seeds of radish plants of different magnetic orientation grown in weak permanent magnetic field

Lipid composition and content in the seeds of radish plants of different magnetic orientation... The content and composition of lipids were studied in the seeds of radish plants (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) grown from “seed to seed” in 2008 and 2009 in the greenhouse of the Institute of Plant Physiology in a permanent horizontal magnetic field (PMF) of Helmholz coils with the strength of ∼400 A/m, in soil culture, at natural day length, and a temperature changing during the day. PMF suppressed all stages of radish plant development, from the appearance of alternative leaves to the formation of pods and mature seeds. In plants of the North-South magnetically oriented type (NS MOT), PMF reduced the number and weight of seeds; in the West-East magnetically oriented type (WEMOT), the number of seeds was reduced but their weights increased. In the seeds of the first generation of NS MOT, the total lipid content was higher than in the seeds of WE MOT. The amount of polar lipids in the seeds of NS MOT increased, whereas in the seeds of WE MOT it decreased or remained unchanged as compared with control. The content of neutral lipids reduced in both plant types. The strongest changes in the fatty acid composition of lipids with the highest content of unsaturated fatty acids were observed in the seeds of WE MOT in 2008. The weak PMF-induced differences in the changes of lipid composition and content in the seeds of different MOTs were evidently determined by seed sensitivity to the direction of field action. It is suggested that the occurrence of different MOTs increases the tolerance of plant population to unfavorable environmental factors, thus affecting its survival. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Lipid composition and content in the seeds of radish plants of different magnetic orientation grown in weak permanent magnetic field

Loading next page...
 
/lp/springer_journal/lipid-composition-and-content-in-the-seeds-of-radish-plants-of-PYl7xlDefo
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371403011X
Publisher site
See Article on Publisher Site

Abstract

The content and composition of lipids were studied in the seeds of radish plants (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) grown from “seed to seed” in 2008 and 2009 in the greenhouse of the Institute of Plant Physiology in a permanent horizontal magnetic field (PMF) of Helmholz coils with the strength of ∼400 A/m, in soil culture, at natural day length, and a temperature changing during the day. PMF suppressed all stages of radish plant development, from the appearance of alternative leaves to the formation of pods and mature seeds. In plants of the North-South magnetically oriented type (NS MOT), PMF reduced the number and weight of seeds; in the West-East magnetically oriented type (WEMOT), the number of seeds was reduced but their weights increased. In the seeds of the first generation of NS MOT, the total lipid content was higher than in the seeds of WE MOT. The amount of polar lipids in the seeds of NS MOT increased, whereas in the seeds of WE MOT it decreased or remained unchanged as compared with control. The content of neutral lipids reduced in both plant types. The strongest changes in the fatty acid composition of lipids with the highest content of unsaturated fatty acids were observed in the seeds of WE MOT in 2008. The weak PMF-induced differences in the changes of lipid composition and content in the seeds of different MOTs were evidently determined by seed sensitivity to the direction of field action. It is suggested that the occurrence of different MOTs increases the tolerance of plant population to unfavorable environmental factors, thus affecting its survival.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 27, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off