Linking recruitment to trophic factors: revisiting the Beverton--Holt recruitment model from a life history and multispecies perspective

Linking recruitment to trophic factors: revisiting the Beverton--Holt recruitment model from a... The Beverton--Holt recruitment model can be derived from arguments about evolution of life history traits related to foraging and predation risk, along with spatially localized and temporarily competitive relationships in the habitats where juvenile fish forage and face predation risk while foraging. This derivation explicitly represents two key biotic factors, food supply (I) and predator abundance (R), which appear as a risk ratio (R/I) that facilitates modelling of changes in trophic circumstances and analysis of historical data. The same general recruitment relationship is expected whether the juvenile life history is simple or involves a complex sequence of stanzas; in the complex case, the Beverton--Holt parameters represent weighted averages or integrals of risk ratios over the stanzas. The relationship should also apply in settings where there is complex, mesoscale variation in habitat and predation risk, provided that animals sense this variation and move about so as to achieve similar survival at all mesoscale rearing sites. The model predicts that changes in food and predation risk can be amplified violently in settings where juvenile survival rate is low, producing large changes in recruitment rates over time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Linking recruitment to trophic factors: revisiting the Beverton--Holt recruitment model from a life history and multispecies perspective

Loading next page...
 
/lp/springer_journal/linking-recruitment-to-trophic-factors-revisiting-the-beverton-holt-6cqdfsTG0A
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1008991021305
Publisher site
See Article on Publisher Site

Abstract

The Beverton--Holt recruitment model can be derived from arguments about evolution of life history traits related to foraging and predation risk, along with spatially localized and temporarily competitive relationships in the habitats where juvenile fish forage and face predation risk while foraging. This derivation explicitly represents two key biotic factors, food supply (I) and predator abundance (R), which appear as a risk ratio (R/I) that facilitates modelling of changes in trophic circumstances and analysis of historical data. The same general recruitment relationship is expected whether the juvenile life history is simple or involves a complex sequence of stanzas; in the complex case, the Beverton--Holt parameters represent weighted averages or integrals of risk ratios over the stanzas. The relationship should also apply in settings where there is complex, mesoscale variation in habitat and predation risk, provided that animals sense this variation and move about so as to achieve similar survival at all mesoscale rearing sites. The model predicts that changes in food and predation risk can be amplified violently in settings where juvenile survival rate is low, producing large changes in recruitment rates over time.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Sep 30, 2004

References

  • Hatchery and wild production of Pacific salmon in relation to large-scale, natural shifts in the productivity of the marine environment
    Beamish, R.J.; Mahnken, C.; Neville, C.M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off