LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes

LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes Retroelements and remnants thereof constitute a large fraction of the repetitive DNA of plant genomes. They include LTR (long terminal repeat) retrotransposons such as Ty1-copia and Ty3-gypsy retrotransposons, which are widespread in plant genomes and show structural similarity to retroviruses. Recently, non-LTR retrotransposons, lacking the long terminal repeats and subdivided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), have been discovered as ubiquitous components of nuclear genomes in many species across the plant kingdom. LINEs are probably the most ancient class of retrotransposons in plant genomes, but the evolutionary borders between non-LTR retrotransposons, LTR retrotransposons and retroviruses are indistinct as shown by the detection of intermediate forms in other eukaryotic taxa. Transposition of non-LTR retrotransposons is only rarely observed in plants indicating that the majority of these retroelements are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems, in particular from insect and mammalian species, shows that LINEs are able to transpose autonomously, while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Fluorescence in situ hybridization demonstrated that different classes of retrotransposons differ largely in their chromosomal organization and are often excluded from blocks of rapidly homogenizing tandem repeats. In particular, LINEs contribute considerably to the repetitive DNA of nuclear plant genomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes

Loading next page...
 
/lp/springer_journal/lines-sines-and-repetitive-dna-non-ltr-retrotransposons-in-plant-MSt0NFQGDA
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006212929794
Publisher site
See Article on Publisher Site

Abstract

Retroelements and remnants thereof constitute a large fraction of the repetitive DNA of plant genomes. They include LTR (long terminal repeat) retrotransposons such as Ty1-copia and Ty3-gypsy retrotransposons, which are widespread in plant genomes and show structural similarity to retroviruses. Recently, non-LTR retrotransposons, lacking the long terminal repeats and subdivided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), have been discovered as ubiquitous components of nuclear genomes in many species across the plant kingdom. LINEs are probably the most ancient class of retrotransposons in plant genomes, but the evolutionary borders between non-LTR retrotransposons, LTR retrotransposons and retroviruses are indistinct as shown by the detection of intermediate forms in other eukaryotic taxa. Transposition of non-LTR retrotransposons is only rarely observed in plants indicating that the majority of these retroelements are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems, in particular from insect and mammalian species, shows that LINEs are able to transpose autonomously, while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Fluorescence in situ hybridization demonstrated that different classes of retrotransposons differ largely in their chromosomal organization and are often excluded from blocks of rapidly homogenizing tandem repeats. In particular, LINEs contribute considerably to the repetitive DNA of nuclear plant genomes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off