LINEs and gypsy-like retrotransposons in Hordeum species

LINEs and gypsy-like retrotransposons in Hordeum species LINE and gypsy-like retroelements were studied in the genome of Hordeum vulgare, and compared with the representatives of the major sections of the genus Hordeum. We isolated reverse transcriptase (RT) genes from four gypsy-like and three LINE families using PCR primers specific for the corresponding conserved domains. A full-length barley LINE of 6295 bp, named BLIN, was isolated from a BAC genomic library. BLIN looks alien in the barley genome because its G+C content is 62% compared to an average of 45%. The BLIN nucleotide sequence showed it was structurally intact with the features typical of non-LTR retrotransposons, including 16 bp target site duplications, two short cysteine motifs, and two degenerate open reading frames (ORFs). The high degeneracy was also found in RT domain of both gypsy-like and, particularly, LINE families. The copy numbers of the gypsy-like families were relatively low compared to well-characterized copia-like element BARE-1. Each gypsy-like family gave unique RFLP patterns when hybridized to genomic DNA from each of the four basic Hordeum genomes. H. vulgare (I genome) had accumulated more copies than the wild Hordeum species (H, X, Y genomes), with the other I genome species, H. bulbosum, being intermediate. Analysis of the BAC library and in situ hybridization with LINE RT domains showed the low copy number of the LINE families, but there was little correlation between hybridization patterns and the division of the genus into four basic genomes. The distribution and content of gypsy retrotransposons in the BAC library indicated that a few copies are nested, although most are present as single, distinct, copies. Our results suggest that the major groups of retroelements make individual contributions to the shape of the plant genome; the factors involved in their amplification and distribution are independent, also varying among species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

LINEs and gypsy-like retrotransposons in Hordeum species

Loading next page...
 
/lp/springer_journal/lines-and-gypsy-like-retrotransposons-in-hordeum-species-0iBNaY9Af0
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014469830680
Publisher site
See Article on Publisher Site

Abstract

LINE and gypsy-like retroelements were studied in the genome of Hordeum vulgare, and compared with the representatives of the major sections of the genus Hordeum. We isolated reverse transcriptase (RT) genes from four gypsy-like and three LINE families using PCR primers specific for the corresponding conserved domains. A full-length barley LINE of 6295 bp, named BLIN, was isolated from a BAC genomic library. BLIN looks alien in the barley genome because its G+C content is 62% compared to an average of 45%. The BLIN nucleotide sequence showed it was structurally intact with the features typical of non-LTR retrotransposons, including 16 bp target site duplications, two short cysteine motifs, and two degenerate open reading frames (ORFs). The high degeneracy was also found in RT domain of both gypsy-like and, particularly, LINE families. The copy numbers of the gypsy-like families were relatively low compared to well-characterized copia-like element BARE-1. Each gypsy-like family gave unique RFLP patterns when hybridized to genomic DNA from each of the four basic Hordeum genomes. H. vulgare (I genome) had accumulated more copies than the wild Hordeum species (H, X, Y genomes), with the other I genome species, H. bulbosum, being intermediate. Analysis of the BAC library and in situ hybridization with LINE RT domains showed the low copy number of the LINE families, but there was little correlation between hybridization patterns and the division of the genus into four basic genomes. The distribution and content of gypsy retrotransposons in the BAC library indicated that a few copies are nested, although most are present as single, distinct, copies. Our results suggest that the major groups of retroelements make individual contributions to the shape of the plant genome; the factors involved in their amplification and distribution are independent, also varying among species.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off