Linear versus logistic regression when the dependent variable is a dichotomy

Linear versus logistic regression when the dependent variable is a dichotomy The article argues against the popular belief that linear regression should not be used when the dependent variable is a dichotomy. The relevance of the statistical arguments against linear analyses, that the tests of significance are inappropriate and that one risk getting meaningless results, are disputed. Violating the homoscedasticity assumption seems to be of little practical importance, as an empirical comparison of results shows nearly identical outcomes for the two kinds of significance tests. When linear analysis of dichotomous dependent variables is seen as acceptable, there in many situations exist compelling arguments of a substantive nature for preferring this approach to logistic regression. Of special importance is the intuitive meaningfulness of the linear measures as differences in probabilities, and their applicability in causal (path) analysis, in contrast to the logistic measures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Linear versus logistic regression when the dependent variable is a dichotomy

Loading next page...
 
/lp/springer_journal/linear-versus-logistic-regression-when-the-dependent-variable-is-a-z00BlDgEXC
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science + Business Media B.V.
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-007-9077-3
Publisher site
See Article on Publisher Site

Abstract

The article argues against the popular belief that linear regression should not be used when the dependent variable is a dichotomy. The relevance of the statistical arguments against linear analyses, that the tests of significance are inappropriate and that one risk getting meaningless results, are disputed. Violating the homoscedasticity assumption seems to be of little practical importance, as an empirical comparison of results shows nearly identical outcomes for the two kinds of significance tests. When linear analysis of dichotomous dependent variables is seen as acceptable, there in many situations exist compelling arguments of a substantive nature for preferring this approach to logistic regression. Of special importance is the intuitive meaningfulness of the linear measures as differences in probabilities, and their applicability in causal (path) analysis, in contrast to the logistic measures.

Journal

Quality & QuantitySpringer Journals

Published: Feb 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off