Lindex: a lattice-based index for graph databases

Lindex: a lattice-based index for graph databases Subgraph querying has wide applications in various fields such as cheminformatics and bioinformatics. Given a query graph, q , a subgraph-querying algorithm retrieves all graphs, D ( q ), which have q as a subgraph, from a graph database, D . Subgraph querying is costly because it uses subgraph isomorphism tests, which are NP-complete. Graph indices are commonly used to improve the performance of subgraph querying in graph databases. Subgraph-querying algorithms first construct a candidate answer set by filtering out a set of false answers and then verify each candidate graph using subgraph isomorphism tests. To build graph indices, various kinds of substructure (subgraph, subtree, or path) features have been proposed with the goal of maximizing the filtering rate. Each of them works with a specifically designed index structure, for example, discriminative and frequent subgraph features work with gIndex, δ -TCFG features work with FG-index, etc. We propose Lindex, a graph index, which indexes subgraphs contained in database graphs. Nodes in Lindex represent key-value pairs where the key is a subgraph in a database and the value is a list of database graphs containing the key. We propose two heuristics that are used in the construction of Lindex that allows us to determine answers to subgraph queries conducting less subgraph isomorphism tests. Consequently, Lindex improves subgraph-querying efficiency. In addition, Lindex is compatible with any choice of features. Empirically, we demonstrate that Lindex used in conjunction with subgraph indexing features proposed in previous works outperforms other specifically designed index structures. As a novel index structure, Lindex (1) is effective in filtering false graphs (2) provides fast index lookups, (3) is fast with respect to index construction and maintenance, and (4) can be constructed using any set of substructure index features. These four properties result in a fast and scalable subgraph-querying infrastructure. We substantiate the benefits of Lindex and its disk-resident variation Lindex+ theoretically and empirically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Lindex: a lattice-based index for graph databases

Loading next page...
 
/lp/springer_journal/lindex-a-lattice-based-index-for-graph-databases-8U6Hoyyvoi
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0284-8
Publisher site
See Article on Publisher Site

Abstract

Subgraph querying has wide applications in various fields such as cheminformatics and bioinformatics. Given a query graph, q , a subgraph-querying algorithm retrieves all graphs, D ( q ), which have q as a subgraph, from a graph database, D . Subgraph querying is costly because it uses subgraph isomorphism tests, which are NP-complete. Graph indices are commonly used to improve the performance of subgraph querying in graph databases. Subgraph-querying algorithms first construct a candidate answer set by filtering out a set of false answers and then verify each candidate graph using subgraph isomorphism tests. To build graph indices, various kinds of substructure (subgraph, subtree, or path) features have been proposed with the goal of maximizing the filtering rate. Each of them works with a specifically designed index structure, for example, discriminative and frequent subgraph features work with gIndex, δ -TCFG features work with FG-index, etc. We propose Lindex, a graph index, which indexes subgraphs contained in database graphs. Nodes in Lindex represent key-value pairs where the key is a subgraph in a database and the value is a list of database graphs containing the key. We propose two heuristics that are used in the construction of Lindex that allows us to determine answers to subgraph queries conducting less subgraph isomorphism tests. Consequently, Lindex improves subgraph-querying efficiency. In addition, Lindex is compatible with any choice of features. Empirically, we demonstrate that Lindex used in conjunction with subgraph indexing features proposed in previous works outperforms other specifically designed index structures. As a novel index structure, Lindex (1) is effective in filtering false graphs (2) provides fast index lookups, (3) is fast with respect to index construction and maintenance, and (4) can be constructed using any set of substructure index features. These four properties result in a fast and scalable subgraph-querying infrastructure. We substantiate the benefits of Lindex and its disk-resident variation Lindex+ theoretically and empirically.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off