Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in Anthoceros Cells

Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in... Capillary microelectrodes and pulse amplitude-modulated microfluorometry were used to study light-triggered changes in cell membrane potential, chlorophyll fluorescence, and photochemical yield of PSII in chloroplasts of a hornwort Anthoceros sp. The action potential was generated by illuminating the plant sample for a few seconds. It was accompanied by a reversible decrease in quantum efficiency of PSII and by nonphotochemical quenching of fluorescence that continued as long as 10 min after the light stimulus. The presence of ammonium ions (2 mM) enhanced the amplitude and prolonged the duration of dark changes of fluorescence parameters in accordance with the reported increase in duration and amplitude of the light-triggered action potential in the presence of NH 4 + . A rapid retardation of PSII activity within the first seconds of illumination was also evident from absorbance changes at 810 nm reflecting the redox conversions of chlorophyll P700. The PSII-dependent stage of reduction in the induction curves of P700 absorbance was strongly suppressed, and the amplitudes of signals induced by white and far-red light (717 nm) differed insignificantly. It is concluded that a short-term irradiation triggers the generation of ΔpH at the thylakoid membranes, which is accompanied by inhibition of the plasma membrane H+ pump and by reversible inactivation of PSII due to increased thermal dissipation of chlorophyll excitations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in Anthoceros Cells

Loading next page...
1
 
/lp/springer_journal/light-triggered-action-potentials-and-changes-in-quantum-efficiency-of-8UGs00GFPJ

References (30)

Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1007/s11183-005-0087-5
Publisher site
See Article on Publisher Site

Abstract

Capillary microelectrodes and pulse amplitude-modulated microfluorometry were used to study light-triggered changes in cell membrane potential, chlorophyll fluorescence, and photochemical yield of PSII in chloroplasts of a hornwort Anthoceros sp. The action potential was generated by illuminating the plant sample for a few seconds. It was accompanied by a reversible decrease in quantum efficiency of PSII and by nonphotochemical quenching of fluorescence that continued as long as 10 min after the light stimulus. The presence of ammonium ions (2 mM) enhanced the amplitude and prolonged the duration of dark changes of fluorescence parameters in accordance with the reported increase in duration and amplitude of the light-triggered action potential in the presence of NH 4 + . A rapid retardation of PSII activity within the first seconds of illumination was also evident from absorbance changes at 810 nm reflecting the redox conversions of chlorophyll P700. The PSII-dependent stage of reduction in the induction curves of P700 absorbance was strongly suppressed, and the amplitudes of signals induced by white and far-red light (717 nm) differed insignificantly. It is concluded that a short-term irradiation triggers the generation of ΔpH at the thylakoid membranes, which is accompanied by inhibition of the plasma membrane H+ pump and by reversible inactivation of PSII due to increased thermal dissipation of chlorophyll excitations.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

There are no references for this article.