Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in Anthoceros Cells

Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in... Capillary microelectrodes and pulse amplitude-modulated microfluorometry were used to study light-triggered changes in cell membrane potential, chlorophyll fluorescence, and photochemical yield of PSII in chloroplasts of a hornwort Anthoceros sp. The action potential was generated by illuminating the plant sample for a few seconds. It was accompanied by a reversible decrease in quantum efficiency of PSII and by nonphotochemical quenching of fluorescence that continued as long as 10 min after the light stimulus. The presence of ammonium ions (2 mM) enhanced the amplitude and prolonged the duration of dark changes of fluorescence parameters in accordance with the reported increase in duration and amplitude of the light-triggered action potential in the presence of NH 4 + . A rapid retardation of PSII activity within the first seconds of illumination was also evident from absorbance changes at 810 nm reflecting the redox conversions of chlorophyll P700. The PSII-dependent stage of reduction in the induction curves of P700 absorbance was strongly suppressed, and the amplitudes of signals induced by white and far-red light (717 nm) differed insignificantly. It is concluded that a short-term irradiation triggers the generation of ΔpH at the thylakoid membranes, which is accompanied by inhibition of the plasma membrane H+ pump and by reversible inactivation of PSII due to increased thermal dissipation of chlorophyll excitations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in Anthoceros Cells

Loading next page...
 
/lp/springer_journal/light-triggered-action-potentials-and-changes-in-quantum-efficiency-of-8UGs00GFPJ
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0087-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial