Light medium-density fibreboards (MDFs): does acetylation improve the physico-mechanical properties?

Light medium-density fibreboards (MDFs): does acetylation improve the physico-mechanical properties? Light medium-density fibreboards (MDFs) with a target density of 580 kg m3 were produced from fibres, which were obtained by defibrillation of chips of commercially available acetylated solid wood (“Accoya®”). The fibres were produced by thermo-mechanical pulping under industry-oriented conditions in a laboratory refiner. Infrared spectra showed that after the refiner process and board production, the material exhibited the same acetyl content as the initially acetylated solid wood. The fibres were bonded with 4 and 8% (related to the dry fibre mass) polymeric methylene diphenyl isocyanate and the properties of the obtained MDFs were compared with comparable MDFs from untreated Scots pine fibres which were produced under the same conditions. The modulus of rupture tended to be slightly lower for the acetylated boards, while the modulus of elasticity and the internal bond strength (IB) were equal for the respective resin loads. Acetylation clearly reduced the thickness swelling and the water uptake during immersion in cold and boiled water compared to the unmodified boards. IB after the boil test increased with acetylation and with the resin content. The study indicates that acetylated MDFs can be produced with maintained mechanical properties but strongly enhanced moisture-related properties by defibrillation of acetylated solid wood chips in a refiner and subsequent conventional board production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Wood and Wood Products Springer Journals

Light medium-density fibreboards (MDFs): does acetylation improve the physico-mechanical properties?

Loading next page...
 
/lp/springer_journal/light-medium-density-fibreboards-mdfs-does-acetylation-improve-the-9TF98PCzWT
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment
ISSN
0018-3768
eISSN
1436-736X
D.O.I.
10.1007/s00107-016-1147-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial