Light intensity dependent characteristics of micro-textured Si/PEDOT:PSS heterojunction solar cell

Light intensity dependent characteristics of micro-textured Si/PEDOT:PSS heterojunction solar cell Heterojunction solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and Si have attracted a lot of attention towards low-cost and efficient devices. Here, heterojunction solar cell using pristine PEDOT:PSS on micro-textured n-Si has been fabricated. Effect of light intensity on photovoltaic characteristics of PEDOT:PSS/Si cells has been investigated via current (J) versus voltage (V) characteristics and quantum efficiency (EQE) measurements. It is found that photocurrent (Jsc) of such cells deteriorates drastically at higher light intensities resulting in quite low Jsc (~ 15.0 mA/cm2) in J–V response under intense white light than that obtained from EQE measurements (> 30.0 mA/cm2) under low intensity monochromatic light. The observed effect of light intensity on the cell performances is reversible. Structural stability of PEDOT:PSS layer is also investigated by Raman spectroscopy. No post high intensity light exposure structural transformation in the PEDOT:PSS layer is observed. The observed light sensitive photoresponse of such cells has been attributed to possible light induced instantaneous structural changes in the PEDOT:PSS layer leading to reduced charge carrier dynamics and hence the formation of space charge region at PEDOT:PSS/Si interface at higher intensities. Further, the EQE with varying intensity is done which can help to optimize the illumination condition for such cell. The present study opens up new area of intensive research required in order to optimize polymer layer properties and improving the performance of PEDOT:PSS/Si solar cell leading to efficient, stable and low cost heterojunction solar cell technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Light intensity dependent characteristics of micro-textured Si/PEDOT:PSS heterojunction solar cell

Loading next page...
 
/lp/springer_journal/light-intensity-dependent-characteristics-of-micro-textured-si-pedot-197Aofupsk
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8472-3
Publisher site
See Article on Publisher Site

Abstract

Heterojunction solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and Si have attracted a lot of attention towards low-cost and efficient devices. Here, heterojunction solar cell using pristine PEDOT:PSS on micro-textured n-Si has been fabricated. Effect of light intensity on photovoltaic characteristics of PEDOT:PSS/Si cells has been investigated via current (J) versus voltage (V) characteristics and quantum efficiency (EQE) measurements. It is found that photocurrent (Jsc) of such cells deteriorates drastically at higher light intensities resulting in quite low Jsc (~ 15.0 mA/cm2) in J–V response under intense white light than that obtained from EQE measurements (> 30.0 mA/cm2) under low intensity monochromatic light. The observed effect of light intensity on the cell performances is reversible. Structural stability of PEDOT:PSS layer is also investigated by Raman spectroscopy. No post high intensity light exposure structural transformation in the PEDOT:PSS layer is observed. The observed light sensitive photoresponse of such cells has been attributed to possible light induced instantaneous structural changes in the PEDOT:PSS layer leading to reduced charge carrier dynamics and hence the formation of space charge region at PEDOT:PSS/Si interface at higher intensities. Further, the EQE with varying intensity is done which can help to optimize the illumination condition for such cell. The present study opens up new area of intensive research required in order to optimize polymer layer properties and improving the performance of PEDOT:PSS/Si solar cell leading to efficient, stable and low cost heterojunction solar cell technology.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off