Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control

Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis:... The unicellular green alga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various stress situations such as salt stress and high light intensities. Here, the light regulation of Haematococcus carotenoid biosynthesis was examined. Isolation and characterization of the lycopene β cyclase gene involved in carotenoid biosynthesis was carried out using a functional complementation approach. Subsequently, gene expression of lycopene cyclase, phytoene synthase, phytoene desaturase and carotenoid hydroxylase was analysed in green flagellate cells. All four genes revealed higher transcript levels in response to increased illumination. Not only the induction of astaxanthin biosynthesis but also carotenoid gene expression was found to be correlated with the redox state of the photosynthetic electron transport. In accordance with this result, increased transcript levels for carotenoid biosynthesis genes were detected under both blue and red light conditions. The application of different inhibitors of the photosynthetic electron flow indicated that the photosynthetic plastoquinone pool functions as the redox sensor for the up-regulation of carotenoid biosynthesis genes. These results suggested that in Haematococcus not only the specific astaxanthin pathway but also general carotenoid biosynthesis is subject to photosynthetic redox control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control

Loading next page...
 
/lp/springer_journal/light-induction-of-carotenoid-biosynthesis-genes-in-the-green-alga-rAbK8hQ0mi
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1023948929665
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial