Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis

Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited... Osmotic stress-induced accumulation of proline, an important protective osmolyte in higher plants, is dependent on the expression of Δ1-pyrroline-5-carboxylate synthase (P5CS) and proline dehydrogenase (PDH) enzymes that catalyze the rate-limiting steps of proline biosynthesis and degradation, respectively. Proline metabolism is modulated by differential regulation of organ specific expression of PDH and duplicated P5CS genes in Arabidopsis. Stimulation of proline synthesis by abscisic acid (ABA) and salt stress correlates with a striking activation of P5CS1 expression. By contrast, P5CS2 is only weakly induced, whereas PDH is inhibited to different extent by ABA and salt stress in shoots and roots of light-grown plants. Proline accumulation and light-dependent induction of P5CS1 by ABA and salt stress is inhibited in dark-adapted plants. During dark adaptation P5CS2 is also down-regulated, whereas PDH expression is significantly enhanced in shoots. The inhibitory effect of dark adaptation on P5CS1 is mimicked by the steroid hormone brassinolide. However, brassinolide fails to stimulate PDH, and inhibits P5CS2 only in shoots. Proline accumulation and induction of P5CS1 transcription are simultaneously enhanced in the ABA-hypersensitive prl1 and brassinosteroid-deficient det2 mutants, whereas P5CS2 shows enhanced induction by ABA and salt only in the det2 mutant. In comparison, the prl1 mutation reduces the basal level of PDH expression, whereas the det2 mutation enhances the inhibition of PDH by ABA. Regulation of P5CS1 expression thus appears to play a principal role in controlling proline accumulation stimulated by ABA and salt stress in Arabidopsis. Plant Molecular Biology Springer Journals

Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis

Loading next page...
Kluwer Academic Publishers
Copyright © 2003 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial