Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots

Light-dependent changes in plastid differentiation influence carotenoid gene expression and... Carrot is an important nutritional crop due to the high levels of pro-vitamin A carotenoids (β-carotene and, to a lower extent, α-carotene) that accumulate in its storage root during secondary growth. In this work we show that in carrots, contrary to that reported for aerial organs of other plant species, light has a profound effect on root development by inhibiting root thickening, preventing the differentiation of chromoplasts and eventually repressing the expression of most genes required for the biosynthesis of β-carotene and α-carotene and to a lesser extent genes for xanthophylls and apocarotenoids biosynthesis. We observed a correlation in the carotenoid profile and the patterns of gene expression during the development of root segments grown either in the light or in the dark, which suggests a transcriptional regulation for carotenoid synthesis during carrot root development. Furthermore, our work supports the conclusion that the differentiation of chromoplasts coincides with carotenoid accumulation during the later stages of development of underground storage roots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots

Loading next page...
 
/lp/springer_journal/light-dependent-changes-in-plastid-differentiation-influence-Awo0YDx9JN
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9893-2
Publisher site
See Article on Publisher Site

Abstract

Carrot is an important nutritional crop due to the high levels of pro-vitamin A carotenoids (β-carotene and, to a lower extent, α-carotene) that accumulate in its storage root during secondary growth. In this work we show that in carrots, contrary to that reported for aerial organs of other plant species, light has a profound effect on root development by inhibiting root thickening, preventing the differentiation of chromoplasts and eventually repressing the expression of most genes required for the biosynthesis of β-carotene and α-carotene and to a lesser extent genes for xanthophylls and apocarotenoids biosynthesis. We observed a correlation in the carotenoid profile and the patterns of gene expression during the development of root segments grown either in the light or in the dark, which suggests a transcriptional regulation for carotenoid synthesis during carrot root development. Furthermore, our work supports the conclusion that the differentiation of chromoplasts coincides with carotenoid accumulation during the later stages of development of underground storage roots.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 18, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off