Lift-induced drag of a cambered wing for Re≤1×106

Lift-induced drag of a cambered wing for Re≤1×106 An investigation of the dependence of the lift-induced drag coefficient C Di of a square-tipped, cambered wing model on Reynolds number for Re ≤ 1 × 106 was conducted. Computed based on the vorticity distribution inferred from the near-field cross-flow velocity measurements of the tip vortex, different C Di prediction schemes were used. The effect of measurement plane size and grid resolution on the C Di calculations was also identified. The C Di estimated by the integral method was found to increase with increasing Re and was below the C Di = C l 2 /πeAR prediction. Limits on the measurement plane size and grid resolution were determined to be at least 40% larger than the vortex outside diameter and no larger than 0.63% chord, respectively, in order to provide a good estimate of the induced drag. Experiments in Fluids Springer Journals

Lift-induced drag of a cambered wing for Re≤1×106

Loading next page...
Copyright © 2006 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial