Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and Annihilation

Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and... Electropermeabilization, an electric field-induced modification of the barrier functions of the cell membrane, is widely used in laboratories and increasingly in the clinic; but the mechanisms and physical structures associated with the electromanipulation of membrane permeability have not been definitively characterized. Indirect experimental observations of electrical conductance and small molecule transport as well as molecular dynamics simulations have led to models in which hydrophilic pores form in phospholipid bilayers with increased probability in the presence of an electric field. Presently available methods do not permit the direct, nanoscale examination of electroporated membranes that would confirm the existence of these structures. To facilitate the reconciliation of poration models with the observed properties of electropermeabilized lipid bilayers and cell membranes, we propose a scheme for characterizing the stages of electropore formation and resealing. This electropore life cycle, based on molecular dynamics simulations of phospholipid bilayers, defines a sequence of discrete steps in the electric field-driven restructuring of the membrane that leads to the formation of a head group-lined, aqueous pore and then, after the field is removed, to the dismantling of the pore and reassembly of the intact bilayer. Utilizing this scheme we can systematically analyze the interactions between the electric field and the bilayer components involved in pore initiation, construction and resealing. We find that the pore creation time depends strongly on the electric field gradient across the membrane interface and that the pore annihilation time is at least weakly dependent on the magnitude of the pore-initiating electric field and, in general, much longer than the pore creation time. The Journal of Membrane Biology Springer Journals

Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and Annihilation

Loading next page...
Copyright © 2010 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology ; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial