Life cycle assessment of oilseed crops produced in rotation with dryland cereals in the inland Pacific Northwest

Life cycle assessment of oilseed crops produced in rotation with dryland cereals in the inland... Purpose Oilseed crops are expected to become an important feedstock for production of renewable jet fuel. The objective of this study is to determine the life cycle energy and greenhouse gas (GHG) emissions of several 2- and 3-year crop rotations with cereals and oilseeds in a low precipitation environment of the inland Pacific Northwest. The purpose is to ascertain whether cropping intensification could improve energy efficiency and reduce GHG emissions. Methods A life cycle assessment (LCA) was carried out to evaluate the fossil energy and carbon footprint of nine cropping systems characterized by different inputs applied to spring carinata [Brassica carinata (A.) Braun] and winter canola (B. napus L.) in rotation with wheat (Triticum aevistum L.) and other cereal crops. Grain yield and field activity data from cropping systems were acquired from a field experiment over a 5-year period. Gas emissions were measured weekly over 2 years using static chamber methodology and laboratory gas chromatography. Inputs for the LCA regarding fertilizers, machinery fuel use, and pesticides were from the field trials and literature for fuel use. −1 Results and discussion Emission results of winter wheat (WW) rotations are between 300 and 400 g CO eq. kg WW, in the http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Life Cycle Assessment Springer Journals

Life cycle assessment of oilseed crops produced in rotation with dryland cereals in the inland Pacific Northwest

Loading next page...
 
/lp/springer_journal/life-cycle-assessment-of-oilseed-crops-produced-in-rotation-with-iDtYsya1NK
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Economics; Environmental Engineering/Biotechnology; Environmental Chemistry
ISSN
0948-3349
eISSN
1614-7502
D.O.I.
10.1007/s11367-018-1488-y
Publisher site
See Article on Publisher Site

Abstract

Purpose Oilseed crops are expected to become an important feedstock for production of renewable jet fuel. The objective of this study is to determine the life cycle energy and greenhouse gas (GHG) emissions of several 2- and 3-year crop rotations with cereals and oilseeds in a low precipitation environment of the inland Pacific Northwest. The purpose is to ascertain whether cropping intensification could improve energy efficiency and reduce GHG emissions. Methods A life cycle assessment (LCA) was carried out to evaluate the fossil energy and carbon footprint of nine cropping systems characterized by different inputs applied to spring carinata [Brassica carinata (A.) Braun] and winter canola (B. napus L.) in rotation with wheat (Triticum aevistum L.) and other cereal crops. Grain yield and field activity data from cropping systems were acquired from a field experiment over a 5-year period. Gas emissions were measured weekly over 2 years using static chamber methodology and laboratory gas chromatography. Inputs for the LCA regarding fertilizers, machinery fuel use, and pesticides were from the field trials and literature for fuel use. −1 Results and discussion Emission results of winter wheat (WW) rotations are between 300 and 400 g CO eq. kg WW, in the

Journal

The International Journal of Life Cycle AssessmentSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off