Lhca5 – an LHC-Type Protein Associated with Photosystem I

Lhca5 – an LHC-Type Protein Associated with Photosystem I The light-harvesting antenna of higher plant photosystem (PS) I is known to be composed of four different types of light-harvesting complex (LHC) proteins (Lhca1–4). However, the genomic sequence of Arabidopsis thaliana contains open reading frames coding for two additional LHC type proteins (Lhca5–6) that are presumably associated with PSI. While Lhca6 might not be expressed at all, ESTs have been detected for the Lhca5 gene in Arabidopsis and a number of other plant species. Here we demonstrate the presence of the Lhca5 gene product in the thylakoid membrane of Arabidopsis as an additional type of Lhca-protein associated with PSI. Lhca5 seems to be regulated differently from the other LHC proteins since Lhca5 mRNA levels increase under high light conditions. Analyses reported here of Lhca5 in plants lacking individual Lhca1–4 proteins show that it is more abundant in plants lacking Lhca1/4, and suggest that it interacts in a direct physical fashion with Lhca2 or Lhca3. We propose that Lhca5 binds chlorophylls in a similar fashion to the other Lhca proteins and is associated with PSI only in sub-stoichiometric amounts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Lhca5 – an LHC-Type Protein Associated with Photosystem I

Loading next page...
 
/lp/springer_journal/lhca5-an-lhc-type-protein-associated-with-photosystem-i-RgjtgdNvAg
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000040813.05224.94
Publisher site
See Article on Publisher Site

Abstract

The light-harvesting antenna of higher plant photosystem (PS) I is known to be composed of four different types of light-harvesting complex (LHC) proteins (Lhca1–4). However, the genomic sequence of Arabidopsis thaliana contains open reading frames coding for two additional LHC type proteins (Lhca5–6) that are presumably associated with PSI. While Lhca6 might not be expressed at all, ESTs have been detected for the Lhca5 gene in Arabidopsis and a number of other plant species. Here we demonstrate the presence of the Lhca5 gene product in the thylakoid membrane of Arabidopsis as an additional type of Lhca-protein associated with PSI. Lhca5 seems to be regulated differently from the other LHC proteins since Lhca5 mRNA levels increase under high light conditions. Analyses reported here of Lhca5 in plants lacking individual Lhca1–4 proteins show that it is more abundant in plants lacking Lhca1/4, and suggest that it interacts in a direct physical fashion with Lhca2 or Lhca3. We propose that Lhca5 binds chlorophylls in a similar fashion to the other Lhca proteins and is associated with PSI only in sub-stoichiometric amounts.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 21, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off