Lens epithelial proliferation cataract in segmental trisomy involving mouse Chromosomes 4 and 17

Lens epithelial proliferation cataract in segmental trisomy involving mouse Chromosomes 4 and 17 A dominant induced mutation in the mouse, tightly associated with a reciprocal chromosomal translocation between Chrs 4 and 17, causes abnormal head tossing and circling behavior (the translocation induced circling mutation, Tim). Affected mice develop an unusual anterior subcapsular cataract that appears after birth and is progressive. The most likely explanation for the phenotypic observations is that the translocation breakpoint disrupted a gene or its regulation. Although the Mos protooncogene is located close to the translocation breakpoint and transgenic mice that overexpress Mos demonstrate cataracts and circling behavior, there were no gross changes in the Mos gene or in its level of expression. The morphological changes observed in the lens resemble those seen in some human congenital cataract syndromes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Lens epithelial proliferation cataract in segmental trisomy involving mouse Chromosomes 4 and 17

Loading next page...
 
/lp/springer_journal/lens-epithelial-proliferation-cataract-in-segmental-trisomy-involving-0S5K1D18Lg
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900952
Publisher site
See Article on Publisher Site

Abstract

A dominant induced mutation in the mouse, tightly associated with a reciprocal chromosomal translocation between Chrs 4 and 17, causes abnormal head tossing and circling behavior (the translocation induced circling mutation, Tim). Affected mice develop an unusual anterior subcapsular cataract that appears after birth and is progressive. The most likely explanation for the phenotypic observations is that the translocation breakpoint disrupted a gene or its regulation. Although the Mos protooncogene is located close to the translocation breakpoint and transgenic mice that overexpress Mos demonstrate cataracts and circling behavior, there were no gross changes in the Mos gene or in its level of expression. The morphological changes observed in the lens resemble those seen in some human congenital cataract syndromes.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off