Learning typographic style: from discrimination to synthesis

Learning typographic style: from discrimination to synthesis Typography is a ubiquitous art form that affects our understanding, perception and trust in what we read. Thousands of different font-faces have been created with enormous variations in the characters. In this paper, we learn the style of a font by analyzing a small subset of only four letters. From these four letters, we learn two tasks. The first is a discrimination task: given the four letters and a new candidate letter, does the new letter belong to the same font? Second, given the four basis letters, can we generate all of the other letters with the same characteristics as those in the basis set? We use deep neural networks to address both tasks, quantitatively and qualitatively measure the results in a variety of novel manners, and present a thorough investigation of the weaknesses and strengths of the approach. All of the experiments are conducted with publicly available font sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Vision and Applications Springer Journals

Learning typographic style: from discrimination to synthesis

Loading next page...
 
/lp/springer_journal/learning-typographic-style-from-discrimination-to-synthesis-muEvsmNISW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Pattern Recognition; Image Processing and Computer Vision; Communications Engineering, Networks
ISSN
0932-8092
eISSN
1432-1769
D.O.I.
10.1007/s00138-017-0842-6
Publisher site
See Article on Publisher Site

Abstract

Typography is a ubiquitous art form that affects our understanding, perception and trust in what we read. Thousands of different font-faces have been created with enormous variations in the characters. In this paper, we learn the style of a font by analyzing a small subset of only four letters. From these four letters, we learn two tasks. The first is a discrimination task: given the four letters and a new candidate letter, does the new letter belong to the same font? Second, given the four basis letters, can we generate all of the other letters with the same characteristics as those in the basis set? We use deep neural networks to address both tasks, quantitatively and qualitatively measure the results in a variety of novel manners, and present a thorough investigation of the weaknesses and strengths of the approach. All of the experiments are conducted with publicly available font sets.

Journal

Machine Vision and ApplicationsSpringer Journals

Published: May 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off