Learning to match ontologies on the Semantic Web

Learning to match ontologies on the Semantic Web On the Semantic Web, data will inevitably come from many different ontologies, and information processing across ontologies is not possible without knowing the semantic mappings between them. Manually finding such mappings is tedious, error-prone, and clearly not possible on the Web scale. Hence the development of tools to assist in the ontology mapping process is crucial to the success of the Semantic Web. We describe GLUE , a system that employs machine learning techniques to find such mappings. Given two ontologies, for each concept in one ontology GLUE finds the most similar concept in the other ontology. We give well-founded probabilistic definitions to several practical similarity measures and show that GLUE can work with all of them. Another key feature of GLUE is that it uses multiple learning strategies, each of which exploits well a different type of information either in the data instances or in the taxonomic structure of the ontologies. To further improve matching accuracy, we extend GLUE to incorporate commonsense knowledge and domain constraints into the matching process. Our approach is thus distinguished in that it works with a variety of well-defined similarity notions and that it efficiently incorporates multiple types of knowledge. We describe a set of experiments on several real-world domains and show that GLUE proposes highly accurate semantic mappings. Finally, we extend GLUE to find complex mappings between ontologies and describe experiments that show the promise of the approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Learning to match ontologies on the Semantic Web

Loading next page...
 
/lp/springer_journal/learning-to-match-ontologies-on-the-semantic-web-W9DljAgIJH
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
ComputerScience
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0104-2
Publisher site
See Article on Publisher Site

Abstract

On the Semantic Web, data will inevitably come from many different ontologies, and information processing across ontologies is not possible without knowing the semantic mappings between them. Manually finding such mappings is tedious, error-prone, and clearly not possible on the Web scale. Hence the development of tools to assist in the ontology mapping process is crucial to the success of the Semantic Web. We describe GLUE , a system that employs machine learning techniques to find such mappings. Given two ontologies, for each concept in one ontology GLUE finds the most similar concept in the other ontology. We give well-founded probabilistic definitions to several practical similarity measures and show that GLUE can work with all of them. Another key feature of GLUE is that it uses multiple learning strategies, each of which exploits well a different type of information either in the data instances or in the taxonomic structure of the ontologies. To further improve matching accuracy, we extend GLUE to incorporate commonsense knowledge and domain constraints into the matching process. Our approach is thus distinguished in that it works with a variety of well-defined similarity notions and that it efficiently incorporates multiple types of knowledge. We describe a set of experiments on several real-world domains and show that GLUE proposes highly accurate semantic mappings. Finally, we extend GLUE to find complex mappings between ontologies and describe experiments that show the promise of the approach.

Journal

The VLDB JournalSpringer Journals

Published: Nov 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off