Learning to lurker rank: an evaluation of learning-to-rank methods for lurking behavior analysis

Learning to lurker rank: an evaluation of learning-to-rank methods for lurking behavior analysis While being long researched in social science and computer–human interaction, lurking behaviors in online social networks (OSNs) have been computationally studied only in recent years. Remarkably, determining lurking behaviors has been modeled as an unsupervised, eigenvector-centrality-based ranking problem, and it has been shown that lurkers can effectively be ranked according to the link structure of an OSN graph. Although this approach has enabled researchers to overcome the lack of ground-truth data at a large scale, the complexity of the problem hints at the opportunity of learning from past lurking experiences as well as of using a variety of behavioral features, including any available, possibly platform-specific information on the activity and interaction of lurkers in an OSN. In this paper, we leverage this opportunity in a principled way, by proposing a machine-learning framework which, once trained on lurking/non-lurking examples from multiple OSNs, allows us to predict the ranking of unseen lurking behaviors, ultimately enabling the prioritization of user engagement tasks. Results obtained on 23 network datasets by state-of-the-art learning-to-rank methods, using different optimization and evaluation criteria, show the significance of the proposed approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Social Network Analysis and Mining Springer Journals

Learning to lurker rank: an evaluation of learning-to-rank methods for lurking behavior analysis

Loading next page...
 
/lp/springer_journal/learning-to-lurker-rank-an-evaluation-of-learning-to-rank-methods-for-CBNgvhuphm
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Computer Science; Data Mining and Knowledge Discovery; Applications of Graph Theory and Complex Networks; Game Theory, Economics, Social and Behav. Sciences; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Methodology of the Social Sciences
ISSN
1869-5450
eISSN
1869-5469
D.O.I.
10.1007/s13278-018-0516-z
Publisher site
See Article on Publisher Site

Abstract

While being long researched in social science and computer–human interaction, lurking behaviors in online social networks (OSNs) have been computationally studied only in recent years. Remarkably, determining lurking behaviors has been modeled as an unsupervised, eigenvector-centrality-based ranking problem, and it has been shown that lurkers can effectively be ranked according to the link structure of an OSN graph. Although this approach has enabled researchers to overcome the lack of ground-truth data at a large scale, the complexity of the problem hints at the opportunity of learning from past lurking experiences as well as of using a variety of behavioral features, including any available, possibly platform-specific information on the activity and interaction of lurkers in an OSN. In this paper, we leverage this opportunity in a principled way, by proposing a machine-learning framework which, once trained on lurking/non-lurking examples from multiple OSNs, allows us to predict the ranking of unseen lurking behaviors, ultimately enabling the prioritization of user engagement tasks. Results obtained on 23 network datasets by state-of-the-art learning-to-rank methods, using different optimization and evaluation criteria, show the significance of the proposed approach.

Journal

Social Network Analysis and MiningSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off