Learning the deformation mechanism of poly(vinylidine fluoride-co-chlorotrifluoroethylene): an insight into strain-induced microstructure evolution via molecular dynamics

Learning the deformation mechanism of poly(vinylidine fluoride-co-chlorotrifluoroethylene): an... Learning the micro-mechanisms of fluorinated polymers during mechanical response is more difficult than that of common polymers due to the unique intrinsic characteristics of the fluorine element. In this paper, we applied molecular dynamics simulations to study deformation mechanisms of poly(vinylidine fluoride-co-chlorotrifluoroethylene) during uniaxial tension. We analyzed the variations of individual energy components and structural distribution curves versus strain in addition to the commonly used stress-strain curves and microstructure evolutions during stretching. The elastic limit is ɛ = 0.02, ɛ = 0.06 is the yield point, ɛ = 0.24 is the termination of the softening, necking occurs at 0.24 < ɛ < 0.5, strain hardening occurs at 0.5 < ɛ < 2.6, and ɛ = 2.6 is the damage or brake point. The elastic behavior of the material does not rely on strain rate, the obvious effect of strain rate can be seen at the yield region and strain softening region, and the stress values are not influenced by strain rates at the softening and hardening stages. Overall, total potential energy is mainly correlated with non-bonded energy, and the proportion of ΔEcoul overwhelms all the others. The energy components are ordered: ΔEcoul > ΔEvdwl > > ΔEangle > ΔEdihed > ΔEbond. The chain conformation at yield point is almost unchanged compared with the pre-stretching conformation. The chain conformations at the end of strain softening changes more obviously than that at yield point. The molecular chains maintain random coil structure before strain hardening, and switch into a stretch chain conformation gradually during strain hardening. The maximum change in bond angle during the stretching process is F-C-H, the largest change in bond length is the C-Cl bond, and the largest change in dihedral angle is H-C-C-H. The change of non-bonded interaction in the poly(VDF-co-CTFE) system is much larger than the bonding interaction, and the main factor affecting bonding interaction is the change of angles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

Learning the deformation mechanism of poly(vinylidine fluoride-co-chlorotrifluoroethylene): an insight into strain-induced microstructure evolution via molecular dynamics

Loading next page...
 
/lp/springer_journal/learning-the-deformation-mechanism-of-poly-vinylidine-fluoride-co-ZSGkcBgOT0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-017-3529-z
Publisher site
See Article on Publisher Site

Abstract

Learning the micro-mechanisms of fluorinated polymers during mechanical response is more difficult than that of common polymers due to the unique intrinsic characteristics of the fluorine element. In this paper, we applied molecular dynamics simulations to study deformation mechanisms of poly(vinylidine fluoride-co-chlorotrifluoroethylene) during uniaxial tension. We analyzed the variations of individual energy components and structural distribution curves versus strain in addition to the commonly used stress-strain curves and microstructure evolutions during stretching. The elastic limit is ɛ = 0.02, ɛ = 0.06 is the yield point, ɛ = 0.24 is the termination of the softening, necking occurs at 0.24 < ɛ < 0.5, strain hardening occurs at 0.5 < ɛ < 2.6, and ɛ = 2.6 is the damage or brake point. The elastic behavior of the material does not rely on strain rate, the obvious effect of strain rate can be seen at the yield region and strain softening region, and the stress values are not influenced by strain rates at the softening and hardening stages. Overall, total potential energy is mainly correlated with non-bonded energy, and the proportion of ΔEcoul overwhelms all the others. The energy components are ordered: ΔEcoul > ΔEvdwl > > ΔEangle > ΔEdihed > ΔEbond. The chain conformation at yield point is almost unchanged compared with the pre-stretching conformation. The chain conformations at the end of strain softening changes more obviously than that at yield point. The molecular chains maintain random coil structure before strain hardening, and switch into a stretch chain conformation gradually during strain hardening. The maximum change in bond angle during the stretching process is F-C-H, the largest change in bond length is the C-Cl bond, and the largest change in dihedral angle is H-C-C-H. The change of non-bonded interaction in the poly(VDF-co-CTFE) system is much larger than the bonding interaction, and the main factor affecting bonding interaction is the change of angles.

Journal

Journal of Molecular ModelingSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off