Layered-routing approach for solving multicast routing and wavelength assignment problem

Layered-routing approach for solving multicast routing and wavelength assignment problem We have developed a new layered-routing approach to address the problem of all-optical multicast over wavelength-routed wavelength division multiplexing (WDM) networks. We model the WDM network as a collection of wavelength layers with sparse light- splitting (LS) and wavelength conversion (WC) capabilities. We apply the degree constraint technique to solve the problem. The approach is capable of completing multicast routing and wavelength assignment (MCRWA) in one step. We propose two generic frameworks to facilitate heuristic development. Any heuristic that is derived from either Prim’s or Kruskal’s algorithm can be easily imported to solve the MCRWA problem. One example is given for each framework to demonstrate heuristic development. Extensive simulations were carried out to measure the performance of heuristics developed from the frameworks. The results show that the STRIGENT scheme is suitable for hardware design and it is advisable to deploy light splitters and wavelength converters to the same node for better performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Layered-routing approach for solving multicast routing and wavelength assignment problem

Loading next page...
 
/lp/springer_journal/layered-routing-approach-for-solving-multicast-routing-and-wavelength-rbPj38eBJP
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0042-1
Publisher site
See Article on Publisher Site

Abstract

We have developed a new layered-routing approach to address the problem of all-optical multicast over wavelength-routed wavelength division multiplexing (WDM) networks. We model the WDM network as a collection of wavelength layers with sparse light- splitting (LS) and wavelength conversion (WC) capabilities. We apply the degree constraint technique to solve the problem. The approach is capable of completing multicast routing and wavelength assignment (MCRWA) in one step. We propose two generic frameworks to facilitate heuristic development. Any heuristic that is derived from either Prim’s or Kruskal’s algorithm can be easily imported to solve the MCRWA problem. One example is given for each framework to demonstrate heuristic development. Extensive simulations were carried out to measure the performance of heuristics developed from the frameworks. The results show that the STRIGENT scheme is suitable for hardware design and it is advisable to deploy light splitters and wavelength converters to the same node for better performance.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 5, 2006

References

  • Steiner problem in networks: a survey
    Winter, P.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off