Lattice Quantum Algorithm for the Schrödinger Wave Equation in 2+1 Dimensions with a Demonstration by Modeling Soliton Instabilities

Lattice Quantum Algorithm for the Schrödinger Wave Equation in 2+1 Dimensions with a... A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit–qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. The model is tested on the transverse modulation instability of a one dimensional soliton wave train, both in its linear and non-linear stages. In the integrable cases where analytical solutions are available, the numerical predictions are in excellent agreement with the theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Lattice Quantum Algorithm for the Schrödinger Wave Equation in 2+1 Dimensions with a Demonstration by Modeling Soliton Instabilities

Loading next page...
 
/lp/springer_journal/lattice-quantum-algorithm-for-the-schr-dinger-wave-equation-in-2-1-HIok70Upa7
Publisher
Springer US
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-005-0008-8
Publisher site
See Article on Publisher Site

Abstract

A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit–qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. The model is tested on the transverse modulation instability of a one dimensional soliton wave train, both in its linear and non-linear stages. In the integrable cases where analytical solutions are available, the numerical predictions are in excellent agreement with the theory.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off