Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature

Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant... In order to investigate the heat transfer characteristics of pulsating flows past a circular cylinder, a Lattice Boltzmann (LB) numerical code based on a 2-dimension-9-velocity frame is developed. The local Nusselt number and the dimensionless viscous force around the cylinder surface are explored in detail. Double Particle Distribution Function model and the second order extrapolation method for the curve boundary of the cylinder are employed in the LB numerical code. Numerical results found that the spatial averaged Nusselt number of the cylinder is oscillating with the same pulsating frequency of the incoming air flows. The heat transfer enhancement is mainly located in the windward side of the cylinder, and the heat transfer enhancement only happens in one half cycle of the pulsation. Whereas the heat transfer in the leeward side of the cylinder is found to be unaffected, and the heat transfer is slightly deteriorated in the other half cycle of the pulsation. Further analysis showed that the heat transfer enhancement is proportional to the magnitude of dimensionless viscous force. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Heat and Mass Transfer Springer Journals

Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature

Loading next page...
 
/lp/springer_journal/lattice-boltzmann-simulation-to-laminar-pulsating-flow-past-a-circular-p4L3nOguj1
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics
ISSN
0947-7411
eISSN
1432-1181
D.O.I.
10.1007/s00231-017-2043-2
Publisher site
See Article on Publisher Site

Abstract

In order to investigate the heat transfer characteristics of pulsating flows past a circular cylinder, a Lattice Boltzmann (LB) numerical code based on a 2-dimension-9-velocity frame is developed. The local Nusselt number and the dimensionless viscous force around the cylinder surface are explored in detail. Double Particle Distribution Function model and the second order extrapolation method for the curve boundary of the cylinder are employed in the LB numerical code. Numerical results found that the spatial averaged Nusselt number of the cylinder is oscillating with the same pulsating frequency of the incoming air flows. The heat transfer enhancement is mainly located in the windward side of the cylinder, and the heat transfer enhancement only happens in one half cycle of the pulsation. Whereas the heat transfer in the leeward side of the cylinder is found to be unaffected, and the heat transfer is slightly deteriorated in the other half cycle of the pulsation. Further analysis showed that the heat transfer enhancement is proportional to the magnitude of dimensionless viscous force.

Journal

Heat and Mass TransferSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off