Late Holocene uplift of the Izu Islands on the northern Zenisu Ridge off Central Japan

Late Holocene uplift of the Izu Islands on the northern Zenisu Ridge off Central Japan To clarify the Holocene uplift history of the Izu Islands, Japan, we analyze the elevations and 14C ages of emerged sessile assemblages measured by accelerator mass spectrometry (AMS) on the islands of Niijima, Jinaijima, Shikinejima, and Kouzushima, on the northern Zenisu Ridge. The results suggest that uplift events took place after AD 1950 (uplift event 1), during AD 786–1891 (uplift event 2), during AD 600–1165 (uplift event 3), and during AD 161–686 (uplift event 4), although uplift events 3 and 4 are identified only at Kouzushima. The minimum amount of uplift was estimated to be 0.4–0.9 m in uplift event 1, 2.4–2.7 m in uplift event 2, 3.6 m in uplift event 3, and 3.3–8.1 m in uplift event 4. These events could have been caused by volcanic activity or strong earthquakes. There also remains the possibility that uplift event 2 was caused by the AD 1498 Meio earthquake; in contrast to the previous interpretation, the ages of uplift events are significantly older than the earthquake, based on conventional (non-AMS) methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Progress in Earth and Planetary Science Springer Journals

Late Holocene uplift of the Izu Islands on the northern Zenisu Ridge off Central Japan

Loading next page...
 
/lp/springer_journal/late-holocene-uplift-of-the-izu-islands-on-the-northern-zenisu-ridge-Yo6WoIfzA8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s).
Subject
Earth Sciences; Earth Sciences, general; Geophysics/Geodesy; Planetology; Biogeosciences; Hydrogeology; Atmospheric Sciences
eISSN
2197-4284
D.O.I.
10.1186/s40645-017-0146-5
Publisher site
See Article on Publisher Site

Abstract

To clarify the Holocene uplift history of the Izu Islands, Japan, we analyze the elevations and 14C ages of emerged sessile assemblages measured by accelerator mass spectrometry (AMS) on the islands of Niijima, Jinaijima, Shikinejima, and Kouzushima, on the northern Zenisu Ridge. The results suggest that uplift events took place after AD 1950 (uplift event 1), during AD 786–1891 (uplift event 2), during AD 600–1165 (uplift event 3), and during AD 161–686 (uplift event 4), although uplift events 3 and 4 are identified only at Kouzushima. The minimum amount of uplift was estimated to be 0.4–0.9 m in uplift event 1, 2.4–2.7 m in uplift event 2, 3.6 m in uplift event 3, and 3.3–8.1 m in uplift event 4. These events could have been caused by volcanic activity or strong earthquakes. There also remains the possibility that uplift event 2 was caused by the AD 1498 Meio earthquake; in contrast to the previous interpretation, the ages of uplift events are significantly older than the earthquake, based on conventional (non-AMS) methods.

Journal

Progress in Earth and Planetary ScienceSpringer Journals

Published: Oct 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off