Laser structuring of parallel electrode array on graphene/glass substrates for rapid inspections of moisturizing efficacy

Laser structuring of parallel electrode array on graphene/glass substrates for rapid inspections... This research aims to structure thin layers of graphene materials for impedance sensing chips with a parallel electrode array and to investigate the interaction between nanosecond pulsed Nd:YVO4 lasers and graphene films coated on glass substrates. The optimal laser structuring conditions consisted of pulse repetition rate of 100 kHz, the scanning speed of two galvano scanners of 600 mm/s, the laser fluence of 3.4 J/cm2, and parallel lines of the laser processing path with the line-scan spacing of 1 μm in one-cycle process to produce the parallel electrode structures. The surface morphology, cross-sectional profile, optical spectra, and material characterizations on graphene/glass substrates were detected by a confocal laser scanning microscope, a scanning electron microscope (SEM), a spectrophotometer, and a Raman spectroscopy, respectively. The parallel electrode sensing chips had been successfully used to detect the moisturizing efficacy of solutions containing moisturizers with 0, 3, 6, and 9 wt% 1,3-Butylene Glycol concentrations. The experimental results showed that the electrochemical impedance spectroscopy combined with graphene sensing chips had high sensitivity and saving time than weight loss of solutions detected by the precision electronic balance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Laser structuring of parallel electrode array on graphene/glass substrates for rapid inspections of moisturizing efficacy

Loading next page...
 
/lp/springer_journal/laser-structuring-of-parallel-electrode-array-on-graphene-glass-nkqwTteSE0
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0045-3
Publisher site
See Article on Publisher Site

Abstract

This research aims to structure thin layers of graphene materials for impedance sensing chips with a parallel electrode array and to investigate the interaction between nanosecond pulsed Nd:YVO4 lasers and graphene films coated on glass substrates. The optimal laser structuring conditions consisted of pulse repetition rate of 100 kHz, the scanning speed of two galvano scanners of 600 mm/s, the laser fluence of 3.4 J/cm2, and parallel lines of the laser processing path with the line-scan spacing of 1 μm in one-cycle process to produce the parallel electrode structures. The surface morphology, cross-sectional profile, optical spectra, and material characterizations on graphene/glass substrates were detected by a confocal laser scanning microscope, a scanning electron microscope (SEM), a spectrophotometer, and a Raman spectroscopy, respectively. The parallel electrode sensing chips had been successfully used to detect the moisturizing efficacy of solutions containing moisturizers with 0, 3, 6, and 9 wt% 1,3-Butylene Glycol concentrations. The experimental results showed that the electrochemical impedance spectroscopy combined with graphene sensing chips had high sensitivity and saving time than weight loss of solutions detected by the precision electronic balance.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off