Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study

Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion... Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/– and As m +/– ) and 34 binary (As m S p +/– ) species for As2S3 glass, 2 unary (Se q +/– ) and 26 binary (As m Se q +/– ) species for As2Se3 glass, 7 unary (Te r +/– ) and 23 binary (As m Te r +/– ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The American Society for Mass Spectrometry Springer Journals

Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study

Loading next page...
 
/lp/springer_journal/laser-desorption-ionization-of-as2ch3-ch-s-se-and-te-chalcogenides-0ZVgkGkMGj
Publisher
Springer US
Copyright
Copyright © 2017 by American Society for Mass Spectrometry
Subject
Chemistry; Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics
ISSN
1044-0305
eISSN
1879-1123
D.O.I.
10.1007/s13361-017-1785-x
Publisher site
See Article on Publisher Site

Abstract

Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/– and As m +/– ) and 34 binary (As m S p +/– ) species for As2S3 glass, 2 unary (Se q +/– ) and 26 binary (As m Se q +/– ) species for As2Se3 glass, 7 unary (Te r +/– ) and 23 binary (As m Te r +/– ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials.

Journal

Journal of The American Society for Mass SpectrometrySpringer Journals

Published: Aug 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off