Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version

Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version Large-scale tomographic particle image velocimetry (tomographic PIV) was used to study large-scale flow structures of turbulent convective air flow in an elongated rectangular convection cell. Three flow cases have been investigated, that is, pure forced convection and mixed convection at two different Archimedes numbers. The Reynolds number was constant at Re = 1.04 × 104 for all cases, while the Archimedes numbers were Ar = 2.1 and 3.6 for the mixed convection cases, corresponding to Rayleigh numbers of Ra = 1.6 × 108 and 2.8 × 108, respectively. In these investigations, the size of the measurement volume was as large as 840 mm × 500 mm × 240 mm. To allow for statistical analysis of the measured instantaneous flow fields, a large number of samples needed to be evaluated. Therefore, an efficient parallel implementation of the tomographic PIV algorithm was developed, which is based on a version of the simultaneous multiplicative reconstruction technique (SMART). Our algorithm distinguishes itself amongst other features by the fact that it does not store any weighting coefficients. The measurement of forced convection reveals an almost two-dimensional roll structure, which is orientated in the longitudinal cell direction. Its mean velocity field exhibits a core line with a wavy shape and a wavelength, which corresponds to the height and depth of the cell. In the instantaneous fields, the core line oscillates around its mean position. Under the influence of thermal buoyancy forces, the global structure of the flow field changes significantly. At lower Archimedes numbers, the resulting roll-like structure is shifted and deformed as compared to pure forced convection. Additionally, the core line oscillates much more strongly around its mean position due to the interaction of the roll structure with the rising hot air. If the Archimedes number is further increased, the roll-like structure breaks up into four counter-rotating convection rolls as a result of the increased influence of buoyancy forces. Moreover, large-scale tomographic PIV reveals that the orientation of these rolls reflects a ‘W’-like shape in the horizontal X–Z-plane of the convection cell. Experiments in Fluids Springer Journals

Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version

Loading next page...
Copyright © 2012 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial