Large-scale linked data integration using probabilistic reasoning and crowdsourcing

Large-scale linked data integration using probabilistic reasoning and crowdsourcing We tackle the problems of semiautomatically matching linked data sets and of linking large collections of Web pages to linked data. Our system, ZenCrowd, (1) uses a three-stage blocking technique in order to obtain the best possible instance matches while minimizing both computational complexity and latency, and (2) identifies entities from natural language text using state-of-the-art techniques and automatically connects them to the linked open data cloud. First, we use structured inverted indices to quickly find potential candidate results from entities that have been indexed in our system. Our system then analyzes the candidate matches and refines them whenever deemed necessary using computationally more expensive queries on a graph database. Finally, we resort to human computation by dynamically generating crowdsourcing tasks in case the algorithmic components fail to come up with convincing results. We integrate all results from the inverted indices, from the graph database and from the crowd using a probabilistic framework in order to make sensible decisions about candidate matches and to identify unreliable human workers. In the following, we give an overview of the architecture of our system and describe in detail our novel three-stage blocking technique and our probabilistic decision framework. We also report on a series of experimental results on a standard data set, showing that our system can achieve a 95 % average accuracy on instance matching (as compared to the initial 88 % average accuracy of the purely automatic baseline) while drastically limiting the amount of work performed by the crowd. The experimental evaluation of our system on the entity linking task shows an average relative improvement of 14 % over our best automatic approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Large-scale linked data integration using probabilistic reasoning and crowdsourcing

Loading next page...
 
/lp/springer_journal/large-scale-linked-data-integration-using-probabilistic-reasoning-and-9bF0N3Q2xG
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0324-z
Publisher site
See Article on Publisher Site

Abstract

We tackle the problems of semiautomatically matching linked data sets and of linking large collections of Web pages to linked data. Our system, ZenCrowd, (1) uses a three-stage blocking technique in order to obtain the best possible instance matches while minimizing both computational complexity and latency, and (2) identifies entities from natural language text using state-of-the-art techniques and automatically connects them to the linked open data cloud. First, we use structured inverted indices to quickly find potential candidate results from entities that have been indexed in our system. Our system then analyzes the candidate matches and refines them whenever deemed necessary using computationally more expensive queries on a graph database. Finally, we resort to human computation by dynamically generating crowdsourcing tasks in case the algorithmic components fail to come up with convincing results. We integrate all results from the inverted indices, from the graph database and from the crowd using a probabilistic framework in order to make sensible decisions about candidate matches and to identify unreliable human workers. In the following, we give an overview of the architecture of our system and describe in detail our novel three-stage blocking technique and our probabilistic decision framework. We also report on a series of experimental results on a standard data set, showing that our system can achieve a 95 % average accuracy on instance matching (as compared to the initial 88 % average accuracy of the purely automatic baseline) while drastically limiting the amount of work performed by the crowd. The experimental evaluation of our system on the entity linking task shows an average relative improvement of 14 % over our best automatic approach.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2013

References

  • Designing games with a purpose
    Ahn, L; Dabbish, L

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off