Landscape features and potential heat hazard threat: a spatial–temporal analysis of two urban universities

Landscape features and potential heat hazard threat: a spatial–temporal analysis of two urban... Urban universities are a microcosm of urban built-up areas, such as cities, but with a much smaller scale of spatial resolution. Within universities, there are many types of landscape features exhibiting different heat absorption and transmission capacities. These landscape features generate spatial–temporal heat signatures, and the knowledge about landscape features and urban heat hazard on university campuses is limited. The objective of this research is an assessment of landscape features and the potential heat hazard threats of two urban universities in ASEAN, located in the centre of the equatorial region. The focus of this research is on urban heat hazards in two urban universities in ASEAN, the University of Malaysia in Kuala Lumpur and the University of Indonesia in Jakarta, within the context of the spatial–temporal behaviour of urban heat and the urban heat effects on the environment and human well-being on campuses. The spatial and temporal analysis used to answer the objective of this research via data-gathering methods from image satellite, ground trough, and human perception study. The UM campus and UI campus, both urban campuses, had similar landscape features but had different total percentage areas of these features. The UM campus was 59.1% covered by the densely vegetated surface landscape feature, a percentage lower than that of the UI campus, which was 65.3% vegetation covered. The temporal results for the UHS of the UM campus in 2013–2016 show a maximum temperature of 39 °C. Therefore, the UHS of the UI campus demonstrated temporal behaviour in 2013–2016, with a maximum temperature of 38 °C. The UHS behaviour of the UM campus and UI campus had an air surface temperature with a maximum average temperature of 33 °C. The air surface temperatures exceeding 32 °C at the UM campus (12 pm until 6 pm = 5 h) lasted for a longer time than those at the UI campus (12 pm until 3 pm = 3 h). This study showed that, based on the perceptions on both campuses, if temperatures exceeded 30 °C, respondents were very hot and very uncomfortable, which will impact health and decrease work or academic achievements, as perceptions of heat intensity impact human well-being. Students perceived that heat intensity impacted their health and they reported becoming tired and lethargic under maximum temperatures and were very hot and very uncomfortable, and this condition impacted their work activity. These results indicated that, at both the UM and UI campuses, heat intensity impacts human well-being, with risks associated with hot temperatures. These two urban campuses are significant for ASEAN university awareness of the urban heat hazard of the equatorial area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Natural Hazards Springer Journals

Landscape features and potential heat hazard threat: a spatial–temporal analysis of two urban universities

Loading next page...
 
/lp/springer_journal/landscape-features-and-potential-heat-hazard-threat-a-spatial-temporal-x3ej6jyJw7
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Hydrogeology; Geophysics/Geodesy; Geotechnical Engineering & Applied Earth Sciences; Civil Engineering; Environmental Management
ISSN
0921-030X
eISSN
1573-0840
D.O.I.
10.1007/s11069-018-3363-3
Publisher site
See Article on Publisher Site

Abstract

Urban universities are a microcosm of urban built-up areas, such as cities, but with a much smaller scale of spatial resolution. Within universities, there are many types of landscape features exhibiting different heat absorption and transmission capacities. These landscape features generate spatial–temporal heat signatures, and the knowledge about landscape features and urban heat hazard on university campuses is limited. The objective of this research is an assessment of landscape features and the potential heat hazard threats of two urban universities in ASEAN, located in the centre of the equatorial region. The focus of this research is on urban heat hazards in two urban universities in ASEAN, the University of Malaysia in Kuala Lumpur and the University of Indonesia in Jakarta, within the context of the spatial–temporal behaviour of urban heat and the urban heat effects on the environment and human well-being on campuses. The spatial and temporal analysis used to answer the objective of this research via data-gathering methods from image satellite, ground trough, and human perception study. The UM campus and UI campus, both urban campuses, had similar landscape features but had different total percentage areas of these features. The UM campus was 59.1% covered by the densely vegetated surface landscape feature, a percentage lower than that of the UI campus, which was 65.3% vegetation covered. The temporal results for the UHS of the UM campus in 2013–2016 show a maximum temperature of 39 °C. Therefore, the UHS of the UI campus demonstrated temporal behaviour in 2013–2016, with a maximum temperature of 38 °C. The UHS behaviour of the UM campus and UI campus had an air surface temperature with a maximum average temperature of 33 °C. The air surface temperatures exceeding 32 °C at the UM campus (12 pm until 6 pm = 5 h) lasted for a longer time than those at the UI campus (12 pm until 3 pm = 3 h). This study showed that, based on the perceptions on both campuses, if temperatures exceeded 30 °C, respondents were very hot and very uncomfortable, which will impact health and decrease work or academic achievements, as perceptions of heat intensity impact human well-being. Students perceived that heat intensity impacted their health and they reported becoming tired and lethargic under maximum temperatures and were very hot and very uncomfortable, and this condition impacted their work activity. These results indicated that, at both the UM and UI campuses, heat intensity impacts human well-being, with risks associated with hot temperatures. These two urban campuses are significant for ASEAN university awareness of the urban heat hazard of the equatorial area.

Journal

Natural HazardsSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off