Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern rift escarpment of Ethiopia

Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern... Characterized by high population density on a rugged topography, the Gedeo-Abaya landscape dominantly contains a multi-strata traditional agroforests showing the insight of Gedeo farmers on natural resource management practices. Currently, this area has been losing its resilience and is becoming unable to sustain its inhabitants. Based on both RS-derived and GIS-computed land-use/cover changes (LUCC) as well as socioeconomic validations, this article explored the LUCC and agroecological-based driver patterns in Gedeo-Abaya landscape from 1986 to 2015. A combination of geo-spatial technology and cross-sectional survey design were employed to detect the drivers behind these changes. The article discussed that LUCC and the prevalence of drivers are highly diverse and vary throughout agroecological zones. Except for the population, most downstream top drivers are perceived as insignificant in the upstream region and vice versa. In the downstream, land-use/cover (LUC) classes are more dynamic, diverse, and challenged by nearly all anticipated drivers than are upstream ones. Agroforestry LUC has been increasing (by 25% of its initial cover) and is becoming the predominant cover type, although socioeconomic analysis and related findings show its rapid LUC modification. A rapid reduction of woodland/shrubland (63%) occurred in the downstream, while wetland/marshy land increased threefold (158%), from 1986 to 2015 with annual change rates of - 3.7 and + 6%, respectively. Land degradation induced by changes in land use is a serious problem in Africa, especially in the densely populated sub-Saharan regions such as Ethiopia (FAO 2015). Throughout the landscape, LUCC is prominently affecting land-use system of the study landscape due to population pressure in the upstream region and drought/rainfall variability, agribusiness investment, and charcoaling in the downstream that necessitate urgent action. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern rift escarpment of Ethiopia

Loading next page...
 
/lp/springer_journal/landscape-based-upstream-downstream-prevalence-of-land-use-cover-0iyl5b4uVU
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
D.O.I.
10.1007/s10661-018-6479-8
Publisher site
See Article on Publisher Site

Abstract

Characterized by high population density on a rugged topography, the Gedeo-Abaya landscape dominantly contains a multi-strata traditional agroforests showing the insight of Gedeo farmers on natural resource management practices. Currently, this area has been losing its resilience and is becoming unable to sustain its inhabitants. Based on both RS-derived and GIS-computed land-use/cover changes (LUCC) as well as socioeconomic validations, this article explored the LUCC and agroecological-based driver patterns in Gedeo-Abaya landscape from 1986 to 2015. A combination of geo-spatial technology and cross-sectional survey design were employed to detect the drivers behind these changes. The article discussed that LUCC and the prevalence of drivers are highly diverse and vary throughout agroecological zones. Except for the population, most downstream top drivers are perceived as insignificant in the upstream region and vice versa. In the downstream, land-use/cover (LUC) classes are more dynamic, diverse, and challenged by nearly all anticipated drivers than are upstream ones. Agroforestry LUC has been increasing (by 25% of its initial cover) and is becoming the predominant cover type, although socioeconomic analysis and related findings show its rapid LUC modification. A rapid reduction of woodland/shrubland (63%) occurred in the downstream, while wetland/marshy land increased threefold (158%), from 1986 to 2015 with annual change rates of - 3.7 and + 6%, respectively. Land degradation induced by changes in land use is a serious problem in Africa, especially in the densely populated sub-Saharan regions such as Ethiopia (FAO 2015). Throughout the landscape, LUCC is prominently affecting land-use system of the study landscape due to population pressure in the upstream region and drought/rainfall variability, agribusiness investment, and charcoaling in the downstream that necessitate urgent action.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Feb 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off