Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm

Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm The quantification of Lagrangian coherent structures (LCS) has been investigated using an algorithm based on the tesselation of unstructured data points. The applicability of the algorithm in resolving an LCS was tested using a synthetically generated unsteady double-gyre flow and experimentally in a nominally two-dimensional free shear flow. The effects of two parameters on LCS identification were studied: the threshold track length used to quantify the LCS and resulting effective seeding density upon applying the threshold. At lower threshold track lengths, increases in the threshold track length resulted in finite-time Lyapunov exponent (FTLE) field convergence towards the expected LCS ridge of the double-gyre flow field at several effective seeding densities. However, at higher track lengths, further increases to the threshold track length failed to improve convergence at low effective seeding densities. The FTLE of the experimental data set was well-resolved using moderate threshold track lengths that achieved field convergence but maintained a sufficiently high seeding density. In contrast, the use of lower or higher track lengths produced an FTLE field characterized by an incoherent LCS ridge. From the analytical and experimental results, recommendations are made for future experiments for identifying LCS directly from unstructured data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm

Loading next page...
 
/lp/springer_journal/lagrangian-coherent-structure-identification-using-a-voronoi-PAByCnxsIL
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2061-0
Publisher site
See Article on Publisher Site

Abstract

The quantification of Lagrangian coherent structures (LCS) has been investigated using an algorithm based on the tesselation of unstructured data points. The applicability of the algorithm in resolving an LCS was tested using a synthetically generated unsteady double-gyre flow and experimentally in a nominally two-dimensional free shear flow. The effects of two parameters on LCS identification were studied: the threshold track length used to quantify the LCS and resulting effective seeding density upon applying the threshold. At lower threshold track lengths, increases in the threshold track length resulted in finite-time Lyapunov exponent (FTLE) field convergence towards the expected LCS ridge of the double-gyre flow field at several effective seeding densities. However, at higher track lengths, further increases to the threshold track length failed to improve convergence at low effective seeding densities. The FTLE of the experimental data set was well-resolved using moderate threshold track lengths that achieved field convergence but maintained a sufficiently high seeding density. In contrast, the use of lower or higher track lengths produced an FTLE field characterized by an incoherent LCS ridge. From the analytical and experimental results, recommendations are made for future experiments for identifying LCS directly from unstructured data.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 23, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off